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Abstract. Using a Karnaugh-map perspective, this paper investigates the definitions, exposes the 
properties, introduces new computational procedures, and discovers interrelationships between the Walsh 

spectrum and the real transform of a switching function. Appropriate Karnaugh maps explain the 

computation of Walsh spectrum as defined in cryptology. An alternative definition of this spectrum 
adopted in digital design and related areas is then presented together with procedures for its matrix 

computation. Then, the real transform of a switching function is defined as a real function of real 

arguments. This definition is clearly distinguished from similar ones such as the multi-linear form or the 
arithmetic transform. The real transform is visualized in terms of a particular version of the Karnaugh 

map called the probability map. Karnaugh maps are also used to demonstrate the computation of the 

spectral coefficients adopted in digital design as the weight of the switching function and weights of its 
subfunctions or restrictions. These maps match the earlier ones for the spectrum used in cryptology. 

Novel relations between the Walsh spectrum and the real transform are utilized in formulating two 

simplified methods for computing the spectrum via the real transform with some aid offered by Karnaugh 
maps. Finally, a solution is offered for the inverse problem of computing the real transform in terms of 

the Walsh spectrum. 

 

Key Words. Switching functions, Walsh spectrum, Spectral coefficients, Real transform, Karnaugh maps, 

Probability maps. 
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1. Introduction 

The two-valued Boolean functions (switching functions) are the simplest interesting 

multivariate functions [1]. They have a wide range of engineering applications, 

including those of coding [1-3], cryptology [1-5], digital design [6-8], system 

reliability [9-19], syllogistic reasoning [20-30], and operations research [31]. 

Switching functions have many useful representations which vary in their suitability 

for handling different applications and in the kind of illumination they cast on 

different functional properties. Notable among these presentations are: 

(a) the Karnaugh map [32] which is a very powerful manual tool that 

provides pictorial insight about the various functional properties and procedures 

when the number of variables involved is small, 

(b) the Walsh spectrum [33-44], which reveals information about the function 

that is much more global in nature, and has prominent applications in cryptology as 

well as digital design and related areas such as signal processing, information 

transmission, function classification, and circuit analysis, design, synthesis and 

testing, and  

(c) the real or probability transform [37, 45-50], which is useful in many 

areas such as that of system reliability. 

The aim of this paper is to investigate the definitions, expose the properties, 

introduce new computational procedures and discover interrelationships between the 

Walsh spectrum and the real transform. This aim is achieved using a Karnaugh-map 

perspective, which makes the exposition of the complex concepts encountered much 

easier to understand. We strive to settle certain sources of confusion, such as (a) a 

purported discrepancy between the definition of the Walsh transform used in 

cryptology and that used in digital design, (b) the existence of different Walsh 

spectra for the typical encoding {0,1} of the output of the switching function, or for 

its decoding to polar encoding {+1, 1}, and (c) the nature of the domain and range 

of the real transform and whether this transform is   

 or . 

The organization of the rest of this paper is as follows. Section 2 presents 

some preliminary definitions needed in subsequent sections. Section 3 exposes via 

appropriate Karnaugh maps the computation of the Walsh spectrum as used in 

cryptology. Section 4 presents the definition and matrix computation of the Walsh 

transform as used by the digital-design community. Section 5 introduces the real 

transform, explains its relation with the arithmetic transform, and visualizes it in 

terms of a particular version of the Karnaugh map called the probability map. 

Section 6 computes the first spectral coefficient, i.e., the first element in the Walsh 

spectrum adopted in digital design, which is the weight of the switching function. 

Section 7 utilizes the results of Section 6 in computing the rest of the spectral 

coefficients as weights of subfunctions of the original function. These computations 

are demonstrated on Karnaugh maps and are shown to match the earlier map 
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computations in Section 3. Sections 8 and 9 present novel relations between the 

Walsh spectrum and the real transform, and subsequently give two simplified 

methods for computing the Walsh spectrum via the real transform with some aid 

offered by Karnaugh maps. Section 10 discusses the inverse problem for those in 

Sections 8 and 9, as it computes the real transform in terms of the Walsh spectrum. 

Section 11 concludes the paper. 

 

2. Preliminary Definitions 

A switching function on n variables may be viewed as a mapping from {0, 1}n into 

{0, 1}. We interpret a switching function  as the 

output column of its truth table f, i.e., a binary vector of length 2n 

 

 f = ..(1) 

 

For switching functions , and  of the same number of variables n , 

and of truth table vectors  and , we denote by #( ) (respectively, #(   

)) the number of places where the vectors  and  are equal (respectively, 

unequal). The Hamming distance between the functions  is denoted by 

d( ), and given by 

 

d( ) = #(  ) . (2) 

 

We also define the weight difference wd  between the two functions 

as 

 

wd( ) = # ( )  #(   ),   (3) 

 

                .   (4) 

 

Also, the Hamming weight or simply the weight of a switching function , 

is the number of ones in its truth-table vector . This is denoted by wt( ). An n-

variable function f is said to be balanced if its output column in the truth table 

contains equal numbers of 0's and 1's (i.e.,  Note that the 

weight difference  is not the difference between the weights of  and .  
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A switching function can also be viewed as a function on the Boolean ring 

[21], or as one over the simplest finite or Galois field, namely the binary field 

GF(2). The addition operator over GF(2) is usually denoted by +. However, in this 

paper, we will denote it by the symbol  of the EXCLUSIVE OR operator in 

switching algebra. We will retain the symbol + for its standard meaning of real 

addition. In term of the  operator, equations (2) and (4) can be rewritten as  

 

    (2a) 

 

   (4a) 

 

An n-variable switching function 

can be considered to be a 

multivariate polynomial over GF(2). This polynomial can be expressed as a sum of 

kth-order products (0  k  n) of distinct variables. More precisely, 

 can be written as [51] 

 (5) 

 

or in expanded form as 

 a0  (a1   a2   an )  (a12   a13   (6) 

     , 

 

3. Walsh Spectrum for Cryptographic Studies 

The Walsh spectrum of an n-variable switching function is based on a set of 

orthogonal functions defined by Walsh [52]. The spectrum is usually called the 

Walsh-Rademacher spectrum, because the Walsh functions are an extension of a set 

of functions defined by Rademacher [53]. The spectrum is also called the Walsh-

Hadamard spectrum, because among several orderings of the Walsh functions, the 

most prominent one is the one due to Hadamard [42]. The Hadamard ordering is the 

one to be adopted herein. Two equivalent (albeit apparently different) mathematical 

descriptions of the Walsh transform appear in the literature. The description 

typically adopted in cryptology is considered in this section, while the one typically 

used in digital design and related areas is deferred to Section 4. 
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Let  and both belong to 

{0,1}n, and let  denote the linear switching function on the n variables  

given by  

 

.   (7) 

 

Let f( ) be a Switching function on the n variables . Then the Walsh 

transform of f(X) is a real-valued function  over {0, 1}n that is defined as 

 

  (8) 

 

 (9) 

 

Note that f( )  = 0 when f( ) =  ( for which 

  = 1), while f( )   = 1 when f( )   ( for which 

  = 1). Thanks to (4a) and (9), the Walsh spectrum  can 

be interpreted as the weight difference between  and , i.e.,  

 

.   (10) 

 

Example 1: 

, (11) 

 

The 2-out-of-3 function is represented by the Karnaugh map in Fig. 1(a) for 

the usual {0, 1} encoding for its truth values. Figure 1(b) represents the same 

function when the truth table values {0, 1} are recoded to {+1, 1}. Figure 1(c) 

shows a Karnaugh map representation for the linear function  of 3 variables.  
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(a)      with values  and disjoint 

coverage. Typically, 0 entries are left blank. 
(b)      with values recoded to {+1, 1}. 

 

(C)  

 

Fig. (1).  Karnaugh-map representations for the 2-out-of-3 function with different encodings, 

and the 3-variable linear function   

 

Figures 2 is a Karnaugh map that represents  as a 

function of X. Entries of this map add to give the Walsh transform, namely 

 

 (12) 
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Fig. (2). Particular values of  for specific values of  

 

Finally, Fig. 3 obtains the Walsh transform of the function  in the form of 

a Karnaugh map of map variables  and . A temporary entry of each cell 

of this map is a specific instant of the map in Fig. 2 with entries computed for 

pertinent values of  and . Each of these entries is either +1 or 1. 

Initially, the temporary entry in the all-0 cell  is the  

map in Fig. 1(b). The temporary entries in other cells are derived from this initial 

entry by switching each 1 to  and each  to 1 for values within the loops 

shown. Note that this switching action is cumulative for overlapping loops. Now, the 

actual intended entries of the large map in Fig. 3 result by adding the entries within 

the smaller maps in each cell. Figure 3 therefore represents  as a pseudo-

Boolean function of  [31, 32]. This figure can now be read to give the following 

expression for the Walsh transform  

 

=     (14a) 

where 

 (13) 

 

,  (14b) 
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Fig. (3). A Karnaugh-map evaluation of the Walsh transform of f(X) in Fig. 1(b) 

 

 

Fig. (4). The truth table of  in (49), cast in the form of a probability map 
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4. Walsh Spectrum for Digital Logic 

The Hadamard ordering of the Walsh spectrum has a simple recursive structure of a 

 transform matrix, , which is called a Hadamard matrix. This matrix 

relates the Walsh spectrum vector  (which is a vector of   spectral coefficients) 

to the truth-table vector  of , which is a vector of  elements  belonging to 

 that express the functional values of the minterms or discriminators of  as 

in (1). This is called the R-encoding in [42]. In an alternative formulation, the Walsh 

spectrum is given by a vector  which is  multiplied by the polar truth-table 

vector  of , namely  

 

,    (14) 

 

Where 1 is a vector of  elements, each of value 1. Note that in , logic  is 

coded as  and logic  is coded as , an encoding called the S-encoding in 

[42]. Figures 1(a) and 1(b) are examples of R-encoding and S-encoding for the 2-

out-of-3 function. In summary, we have: 

 

,    (15) 

 

.    (16) 

 

The Hadamard matrix  in (15) and (16) is a  matrix with entries 

belonging to  and a recursive structure given by 

 

,    (17) 

 

.    (18) 

 

The rows of  are the set of  n-variable Walsh functions [42]. The matrix  is 

symmetric ) , orthogonal  and idempotent . 

The matrix  is also quasi-involutary (quasi self-inverse). It is equal to its own 

inverse to within a multiplicative constant  .  
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The matrix  can be equivalently defined via Kronecker products [42, 51, 54-57] 

as follows 

,     (19) 

 

   ,   (20) 

 

where (20) could be rewritten as  

 

.     (21) 

 

In the following, we will stress the S-encoding and use  as our Walsh 

spectrum, unless otherwise stated. This choice agrees with the definition used in 

cryptography studies. The Walsh spectrum  for the R-encoding is related to . 

Thanks to (14) and its inverse relation 

 

     (22) 

 

we have the following interrelationships between the elements of  and those of  

 

,    (23) 

 

   (24) 

 

    (25) 

 

.   (26) 

 

In passing, we note that the truth-table vector  represents the function  via a 

basis vector , i.e., 
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,     (27) 

 

where  is expressed recursively as  

 

,     (28a) 

 

    (28b) 

 

5. The Real Transform of a Switching Function 

Various forms of the real transform (also called the probability or arithmetic 

transform) are discussed in [37, 45-50]. The following definition is taken from [37], 

and the following exposition relies on results obtained in [18, 36, 37, 47, 48]. 

 The real transform  of a switching function ( ), denoted 

by  is defined to possess the following two properties: 

a) R(p) is a multi-affine continuous real function of continuous real variables 

 i.e., R is a first-degree polynomial in each of its arguments  . 

b. R(p) has the same “truth table” as ( ), i.e. 

 

,                            for j = 0, 1, …, ( 2n – 1 ), (29) 

 

 

where tj  is the jth input line of the truth table ; tj is an n-vector of binary 

components such that  


=

n

i 1

2n–i tji  =  j,                 for j = 0, 1, …, ( 2n – 1 ).   (30) 

 

We stress that property (b) above does not suffice to produce a unique  

and it must be supplemented by the requirement that  be multiaffine to define 

 uniquely [47]. We also note that if the real transform   and its arguments  

are restricted to discrete binary values (i.e., if ) then  

becomes the multilinear form of a switching function [58, 59], typically referred to 

as the structure function [60, 61] in system reliability. 
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The definition above for  implies that it is a function from the n-

dimensional real space to the real line . Though both R and p could 

be free real values, they have a very interesting interpretations as probabilities, i.e., 

when restricted to the [0.0, 1.0] and [0.0, 1.0]n real intervals. An important property 

of the real transform R(p) is that if its vector argument or input p is restricted to the 

domain within the n-dimensional interval [ 0.0, 1.0 ]n, i.e. if 0.0   pi    1.0 for 1  i 

 n, then the image of R(p) will be restricted to the unit real interval [ 0.0, 1.0 ]. 

The probability transform is a bijective (one-to-one and onto) mapping from 

the set of switching functions to the subset of multi-affine functions such that if the 

function’s domain is the power binary set  then its image belongs to the 

binary set {0, 1}. Evidently, an R(p) restricted to binary values whenever its 

arguments are restricted to binary values can produce the “truth table” that 

completely specifies its inverse image ( ) via (29). On the other hand, a multi-

affine function of n variables is completely specified by  independent conditions 

[47], e.g., the ones in (29). In fact, such a function can be expressed by the finite 

multivariable Taylor’s expansion [48] 

 

R(p) =R() + 
=

n

i 1

( R/pi )p= ( pi  i ) + 
 nji1

( 2R/pipj ) p= ( pi  i ) ( pj  j ) + 


 nkji1

( 3R/pipjpk ) p= ( pi  i ) ( pj  j ) ( pk  k ) + ……….. 

+ (nR/p1p2…pn ) p=  (   1 ) (   2 ) …….(   n ). (31) 

 

The expansion (31) has =  2n coefficients which are functions 

of the expansion point p =  . These coefficients can be viewed to form a spectrum 

for the switching function  =  Note that the partial derivative of 

 in (31) w.r.t certain variables  is independent of such variables, and therefore 

this derivative is not affected by the assignments  which are part of the 

restriction . In particular, the nth-order derivative  

is a constant, and its restriction via  might be omitted. 

The real transform as defined above is related to the vector  of the 

arithmetic transform in [49] as follows. The vector  is simply a representation of 

 on a basis , namely  

 

,    (32) 
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where  is defined recursively as  

 

,    (33) 

 

.   (34) 

 

For example,  

 

, 

, 

 

 

In [49], the vector  is obtained from the truth-table vector  via  

 

,    (35) 

 

where  is defined recursively as  

 

    (36) 

 

.   (37) 

 

Alternatively  can be defined as a Kronecker product via:  

 

,    (38) 

 

.   (39) 
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The inverse of  is  defined by  

,(40) 

 

.(41) 

 

or equivalently by 

,(42) 

 

.(43) 

 

In the following, we show that the real transform of a switching function is 

readily obtained via a disjoint sum-of-products expression of it. This observation in 

very useful since there are literally hundreds of algorithms for producing such an 

expression (see, e.g., [9-19]). 

Theorem 1:  

Let the switching function  be expressed by the disjoint sum-of-products 

(s-o-p) form 

 

   (44) 

 

Where 

 

Di  Dj = 0                     i, j ,  (44a) 

 

 k,  (44b) 

and none of the products Dk has any redundant literal (redundant literals can be 

eliminated via idempotency of the AND operator  Here,  

and  are the sets of indices for uncomplemented literals and complemented 

literals in the product  . Now, we let the expression 
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   (45) 

 

Where 

 

 (46) 

 

be obtained from (44) by replacing the AND operator by the multiplication 

operator, the OR operator by the addition operator, each un-complemented variable 

Xi by pi, and each complemented variable  by (1 pi ). Then  

Proof: For j = 1, 2,.. ., n, the degree of pj in  T(Dk) for k = 1, 2, ..., m is at 

most 1. Hence, its degree in T(f) is also at most 1, i.e. T(f) is a first-degree 

polynomial in pj. This means that T(f) is a multi-affine function of p . Furthermore, 

for each line of the “truth table” X = p = tj , T(Dk) has the same value (0 or 1) as Dk. 

If f(tj) = 0, then all products Dk are 0, all T(Dk) are 0, and T(f) is 0. If f(tj) = l , then 

exactly one product Dk is 1 since the products are disjoint. Only the transformed 

product T(Dk) originating from this particular Dk is 1, while all other transformed 

products are 0. Hence, T(f) is 1. Thus, f and T(f) have the same truth table. Since T(f) 

is a multi-affine function with the same truth table as f, it is equal to  

Example 2: 

Let us consider a switching function  

 

.  (47) 

 

which represents the failure of a 3-out-of-4:F (2-out-of-4:G) system [62, 63]. 

This function in a disjoint s-o-p form is [62]: 

 

 (48) 

 

The real transform of f(X) is obtained by replacing the AND operations and 

the OR operations in (48) by their algebraic counterparts of addition and 

multiplications, and replacing variables Xi and  by their expectations pi and  

(1  pi), via: 
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R(p) = (1 p1 ) (1 p2 ) (1 p3 ) + (1 p1 ) (1 p2 ) p3 (1 p4 ) 

+ (1 p1 ) p2 (1 p3 ) (1 p4 ) +  p1(1 p2 ) (1 p3 ) (1 p4 ) 

= 1 ( p1p2 + p1p3 + p1p4 + p2p3 + p2p4 + p3p4 ) + 

2( p1p2p3 + p1p2p4 + p1p3p4 + p2p3p4) – 3p1p2p3p4  (49) 

 

The “truth values” in the “truth table” of R(p) are necessary and sufficient for 

determining R(p). The “truth table” of R(p) is similar to that of f(X) and is given by 

the following special version of a Karnaugh map called probability map [11], shown 

in Fig. 4 

 

6. Computation of The Weight of a Switching Function 

Theorem 2: 

The weight of the switching function   is given in terms of its real 

transform as   

 

 (50) 

  

where R(p) denotes the real transform of f(X), and  means a vector of n 

elements each of which is  

Theorem 3: 

Let the switching function f(X) be expressed by the disjoint sum-of-products 

(s-o-p) form (44), then the weight of f(X) is given by  

 

    (51) 

 

where is the number of irredundant literals in the product Dk, e. g. 

   The logical value 0 is not 

considered a product . But anyhow we assume that  so were we to 

have  it would contribute nothing to  The minterm expansion of f(X) 

is a special case of (44). for which (Dk) = n, k, and (51) produces the correct 

result  for this special case.  
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The polarized weight of a switching function (wp (f)) is the sum of its truth 

table entries when its truth table is recoded from {0, 1} to {+1, 1}, The value of 

wp(f) is given by  

wp (f) = ( No. of Off values of f ) * ( 1 )0 + ( No. of On values of f ) * ( 1 )1 

 

   (52) 

 

In particular, the polarized weight is given in terms of the real transform as  

 

  (53) 

 

Example 3: 

The 2-out-of-3 function discussed earlier in Example 1, is shown with a 

disjoint coverage of non-overlapping loops in Fig. 1(a), and hence is expressed by 

the disjoint s-o-p expression 

 

   (11a) 

 

Therefore, its weight and polarized weight are obtained via (51) and (52) as  

 

wt (f) = +  +  = 2 + 1 + 1 = 4, 

 

 

in agreement with what can be deduced from Figs. 1(a) and 1(b). 

 

7. The Walsh Spectrum in Terms of Subfunction Weights 

Each row of  can be viewed as an encoding {1→ 0, 1→1} of a particular odd 

parity function , which involves 

the (possibly empty) subset    { } of the set of n elements of X. For a 

given row, the variables involved are those corresponding to l’s in the binary 
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expansion of the row index, with X1 corresponding to the most significant bit [37]. 

The spectral coefficients are distinguished using subscripts identifying the variables 

involved in the corresponding row. Such a subscript identification is useful, since 

  measures the ‘correlation’ between  and the odd parity function 

. In fact,  equals the number of input vectors for which 

  (54a) 

 

minus the number of input vectors for which  

 

  (54b) 

 

The first spectral coefficient is denoted by r0 and measures the ‘correlation’ 

of  f(X) to , and hence equals the number of input vectors for which f(X) 

= 1, i.e. equals the weight wt(f(X)), namely:  

 

     (55) 

 

There is a set of a ‘first-order’ spectral coefficients ri, i =1, 2,..., n, each of which 

measures the correlation of f(X) to (Xi)= Xi , and hence equals 

 

ri = wt(f(X | (Xi) = 0) – wt(f(X | (Xi) = 1)).  (56) 

 

Here, the notation  denotes the subfunction or 

restriction of  when  where  This result is generalized into 

the following theorem. 

 

Theorem 4: 

The spectral coefficients of a switching function are given by: 

 = wt(f(X | ) = 0))  wt(f(X | 

= 1)). (57) 
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Equations (55)-(57) are for the R-encoding. Note that for m = 0, we need 

 i.e., the odd-parity function of 0 variables, which is 0, and (57) reduces to 

(55) if we understand that . The counterparts of (55)-(57) for 

the S-encoding use polarized weights and {+1, 1} encoding for the odd-parity 

functions. They are given by 

 

,    (55a) 

 

  (56a) 

 

 
 (57a) 

 

   

 

Example 4: 

Figure 5 demonstrates the matrix computation of the S spectrum as the matrix 

product , where for convenience the column vector F is not placed to the right 

of but instead the transpose of F (a row vector) is placed above  . This is a 

well-known trick used frequently [64] to enhance the readability of matrix 

multiplication. Figure 6 illustrates Karnaugh maps for F with superimposed loops 

representing pertinent odd parity functions. Each of these maps is a demonstration of 

equations (55a)-(57a), since it gives the pertinent spectral coefficient as a sum of un-

circled entries  (for which the pertinent  ) minus the sum of encircled 

entries (for which the pertinent  ). For convenience, we indicate below 

each map the odd-party function  used, and the value of the corresponding spectral 

coefficient. Figures 6 and 3 are in total agreement. In Fig. 6, all the maps have 

identical entries and we take the difference of the sum of un-circled entries and that 

of encircled ones, and in Fig. 3, each map has its own entries that we simply add. In 

other words, we observe that we could redraw the Karnaugh maps in Fig. 6 without 

loops by simply negating all the entries encircled by the loops therein, and then 

calculating the spectral coefficients simply as the sums of each map entries. This 

observation brings us exactly to the situation depicted in Fig. 3. In passing, we note 

that since the 2-out-of-3 function is a totally symmetric function, its spectral 

coefficients of equal numbers of subscripts are the same, i.e.,  
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    (58a) 

 

    (58b) 

 

 

Fig. (5).  Matrix computation of the spectrum S for the 2-out-of-3 function 
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Fig. (6). Computation of the Walsh Spectrum (S-encoding) for the 2-out-of-3 function 
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8. The Walsh Spectrum in Terms of The Real Transform 

Equation (57a) can be rewritten for in the form 

 

 (59) 

 

where  is an (n m) variable function obtained as a subfunction or a 

restriction of f(X) through one particular assignment of the m variables 

 which constitute a subset of X. Since the vectors X, Y and 

 are of dimensions n, m, and , respectively, there are and 

 such vectors, respectively. The set of  vectors for which the number of l’s 

in the components of the m-tuple  is even (odd) is denoted by Em (Om). The 

cardinality (number of elements) of  each of the sets Em and Om (for ) is 

. Due to (53), equation (59) can be reduced to 

 

   (60) 

 

where R is the real transform of f(X). Since R is a multi-affine function, 

mathematical induction can be used to reduce the expression for  further 

into 

 

= ( 1)m+1    (61) 

 

Equation (61) means that an mth-order spectral coefficient is proportional to 

the mth derivative of the real transform of the switching function with respect to the 

pertinent variables. That derivative is independent of these variables; an immediate 

consequence of the multi-affine nature of R. As a corollary of (61), if the switching 

function is vacuous in any input variable , i.e.,  is independent of , then 

the  spectral coefficients that contain  in their subscript identification will be 

zero valued  Also if  is partially symmetric in  and , (and hence,  and 
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 are interchangeable in , then  and moreover any two spectral 

coefficients that share the same subscripts and differ only in the replacement of  by 

 are also equal. We stress that (59)-(61) are used for . The first spectral 

coefficient  is given by (55a), possibly combined with (53).   

 

Example 5: 

The real transform of the 2-out-of-3 function in Examples 1 and 3 can be 

obtained from its disjoint s-o-p expression (54) as 

 

 = p1 p2 +(1 p1) p2 p3 + p1(1 p2) p3= p1 p2 + p2 p3+ p1p3 – 2 p1 p2 p3 (62) 

 

The first spectral coefficient  is obtained as 

 

=  23 – 24 * R  = 0, 

 

while the spectral coefficients , , and  can be obtained via (60) as 

 

   = [R (0 , , ) – R ( l, , )] = , 

 

 = [R ( 0 , 0 , ) + R ( 1 , 1 , ) – R ( 0 , 1 , ) –  R ( l , 0 , )] 

= , 

 

= [R ( 0 , 0 , 0 ) + R ( l , l , 0 ) + R ( l , 0 , l ) + R ( 0 , l , 1 ) 

 R ( l , 0 , 0 ) – R ( 0 , 1 , 0 ) – R ( 0 , 0 , l ) – R ( l , l , 1 )] 

= . 

 

Alternatively, these spectral coefficients can be found via (61) as 
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. 

 

Example 6: 

With a little abuse of notation, we use  and  to denote the real 

transform and the two types of the spectral coefficients of the complement f ( X ) 

of f (X). The real transform  is given by 

 

R (p) = 1 – R (p).    (63) 

 

Equations (55)-(57) and (55a)–(57a) can be used to express the spectrum of f ( X ) 

as 

 

,    (64a) 

 

,            for  m ≥ 1 (64b) 

 

,    (65a) 

 

,            for  m ≥ 1 (65b) 

 

It is interesting to note that the Dotson and Gobien algorithm [10] for 

producing a disjoint s-o-p expression of f, also yields a disjoint s-o-p expression for 

f  as an offshoot output. The more compact expression among the disjoint ones for  

f and f  is to be chosen, and the corresponding spectrum is to be obtained. If the 

spectrum of  is obtained, the conversion to that of  is straight via (64), or (65), and 

vice versa. 



The Walsh Spectrum and the Real Transform of a Switching Function: …  97 

Example 7: 

The basic spectrum for an n-variable function f(X) that expresses a single 

literal Xi is obtained as follows: 

 

f(X) = Xi  ,  R(p) = pi 

 = 2n – 2n+1 R( ) = 0, 

 = 2n ( R / pi) = 2n
, 

 

while all the remaining spectral coefficients are 0’s. 

Example 8: 

The first spectral coefficient  of a single product  is obtained from (52) 

and (55a) as follows: 

 

 ( ) = .   (66) 

 

The real transform of  is obtained from (46) as  

 

  (46a) 

 

Thanks to (61), the higher-order spectral coefficient  of  is 

proportional to the mth-order derivative of  w.r.t. .  Now, 

we consider three cases: 

Case a: is not a subset of i.e., if one or more 

of the variables  does not appear in  , and hence  does not 

appear in , then according to (61) 

 

    (67a) 
 

Case b: If  is equal to  then according to (61): 

 

 (67b) 
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where   is the cardinality of the set  or simply the 

number of complemented literals in the product  whose literal subscripts are 

considered in . 

Case c: If  is a proper subset of  

 

 (67c) 

 

Note that (67c) includes (67b) when the cardinality  

For example consider the product  when viewed as a function of the four 

variables  According to (66), and (67) all its spectral coefficients are 

0’s, except  

 

 

 

 

 

 

9. Walsh Spectrum Computation Revisited 

If the switching function f (X) is given by the disjoint s-o-p expression (44), then its 

real transform is given by 

 

   (68) 

 

The first spectral coefficient is obtained from (52), (55a), and (66) as 

 

  (69) 
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Thanks to (61), (68), and the fact that the two linear operators of 

differentiation and finite summation are interchangeable, the higher-order spectral 

coefficients are obtained as 

 

  (70) 

 

In (68) and (69), the coefficient  and   ( ) represent the 

spectrum of single product Dk, and can be obtained via equations (66) and (67). The 

set of equations (66), (67), (69), and (70) constitute a procedure for spectrum 

computation. This procedure can be viewed as a formal development of the method 

outlined in [6, pp. 35-40] and [34]. 

As a special case, f(X) can be expressed by its minterm expansion 

 

    (71) 

where K is the set of indices for the true minterms of f. In this case, the spectrum of f 

is given by 

 

   (72) 

 

Here,  can be obtained from (67c), or via (25), (26) and the fact that 

 ( ) = +1 ( 1) if the number of uncomplemented variables among 

 in the minterm  is even (odd). This observation can be used to 

explain the technique of [65], and is equivalent to the basic definition of the 

spectrum (equation (16)). 

Example 9: 

Consider the 4-variable function 

 

  (73) 

 

The disjoint s-o-p representations of f and f  are obtained in Fig. 7(a) and (b) as 
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,  (73a) 

 

.   (73b) 

 

Computation of the spectra of f and f  via (66), (67), (69), and (70) are 

illustrated on the spectral - coefficients maps of Figs. 7(c) and 7(d). The spectra 

obtained satisfy (16) and (65). 
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Fig. (7). Disjoint representation of (a)  and (b)  and spectral-coefficient maps for computing the 

spectra of (c)  and (d)  

 

 

10. The Real Transform in Terms of The Spectrum 

The real transform R(p) can be expanded about an arbitrary point p = t via a finite 

multivariable Taylor’s expansion of 2n coefficients [36, equation (8)]. If t is chosen 

as , and the conditions of equation (61) are invoked, then R(p) is given by 
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(74) 

 

Equation (74) expresses the real transform in terms of the spectral 

coefficients. Since a switching function is uniquely defined by its real transform, eq. 

(74) can be viewed as a computational method for the inverse spectrum, i.e. for 

determining the switching function in terms of its spectral coefficients. 

Example 10: 

We know that the spectral coefficients of the 2-out-of-3 function are 

   and . 

Hence,  its real transform is 

 

R( ,  ) = [ –  (0)] +  ( 4 (p1 – ) + 4 (p2 – )) + 4 (p3 – )  0 

+      ( )( 4) (p1 – ) (p2 – ) (p3 – ) 

(75) 

 

Since f and R share the same truth table, the 2-out-of-3 function is easily 

retrieved from (75). 

Example 11: 

Figure 8 summarizes some of the properties discussed herein for the sixteen 

binary switching functions of the form 

 

.   (76) 

 

The functions are displayed within the cells of a Karnaugh map of arguments 

. Each map cell represents the name of the pertinent function, its 

Boolean expression  its real transform , its truth-table encodings 

 and  and its corresponding Walsh spectra  and , where  

 

(77) 
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    (78) 

 

,  (79) 

 

  (80) 

 

   (81) 

 

In passing, we note that Fig. 8 has a wealth of useful information that 

facilitates easy reference, and which is even richer then the contents of a full paper 

[66] that rediscovers the arithmetic transform as an arithmetic version of Boolean 

algebra. The arrangement of the 16 binary switching functions on the Karnaugh map 

of Fig. 8 is equivalent to their arrangement on a Hasse diagram (see, e.g., [67, 68]). 

With such an arrangement, Fig. 8 can be used to reproduce Figs. 1 and 2 of [69] in 

which the real transform is rediscovered under the disguised name of the 

Generalized Boolean polynomial (GBP). Another reference which rediscovers the 

real transform is [70] which labels it as a measure on a finite free Boolean algebra, 

and uses it in the evaluation of sizes of queries applied to binary tables in relational 

databases and to the identification of frequent sets of items and to association rules 

in data mining.  
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Fig. (8). The sixteen binary switching functions. 
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11. Conclusions 

The pictorial insight provided by the Karnaugh map makes the discussion of 

many topics in combinatorics from a Karnaugh-map perspective a lucid and 

appealing task. An earlier example supporting this point is the comparative study of 

methods of system reliability analysis in a Karnaugh-map perspective [71]. 

The current paper is a clear demonstration of the utility of the Karnaugh map 

as a pedagogical tool not only for its conventional usage in solving various coverage 

problems for switching functions, but also for novel non-conventional uses in 

explaining a variety of complex concepts. The task addressed herein is the 

exposition of two famous representations for switching functions, namely, the Walsh 

spectrum and the real transform. The literature on these two representations is both 

complex and confusing due to the existence of different definitions used by different 

communities of researchers. This paper is a serious attempt for a unified and 

simplified treatment of the subject fully addressing sources of ambiguity or 

discrepancy. The interrelationship between the Walsh spectrum and real transform is 

thoroughly and explicitly expressed and utilized as a basis for computational 

procedures of one representation in terms of the other. 
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 طيف والش والتحويل الحقيقي لدالة تبديلية: مراجعة من منظور خريطة كارنوه 
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 قسم الهندسة الكهربائية وهندسة الحاسبات، كلية الهندسة، 
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arushdi@kau.edu.sa 
 

 م(24/4/2014م ؛ قبل للنشر بتاريخ 3/2/2014)قدم للنشر بتاريخ  

في استقصاء التعريفات  تستخدم ورقة البحث هذه منظور خريطة كارنوه ملخص البحث.

وشرح الخصائص واستحداث إجراءات حسابية جديدة واكتشاف التزاوجات بين طيف 
والش والتحويل الحقيقي لدالة تبديلية. يتم استخدام خرائط كارنوه مناسبة في شرح كيفية 
حساب طيف والش كما يعُرَف في علم التعمية. يلي ذلك تقديم تعريف بديل لهذا الطيف 

في التصميم الرقمي والمجالات اللصيقة به، ويرُدَف ذلك بالإجراءات المصفوفية  مستخدم
اللازمة لحسابه. ثم يتم تعريف التحويل الحقيقي لدالة تبديلية كدالة حقيقية في متغيرات 
حقيقية، ويجري التمييز بوضوح بين هذا التعريف وتعريفات شبيهة به مثل الصيغة عديدة 

حسابي. كما يتم شرح التحويل الحقيقي تصويريا من خلال صيغة  الخطية أو التحويل ال
خاصة لخريطة كارنوه تدعى خريطة الاحتمالات. تسُتعمَل خرائط كارنوه أيضاً لبيان كيفية 
حساب المعاملات الطيفية المستخدمة في التصميم الرقمي كوزن للدالة التبديلية وكأوزان  

لدالة. تتواءم هذه الخرائط مع الخرائط السابقة للطيف  للدوال الفرعية الناشئة من تقييد هذه ا
المستعمل في علم التعمية. يسُتفاد من التزاوجات المستحدثة بين طيف والش والتحويل 
الحقيقي في صياغة طريقتين مبسطتين لحساب الطيف بدلالة التحويل الحقيقي من خلال  

مسألة العكسية المعنية بحساب بعض المعاونة من خرائط كارنوه. تخُتتَم الورقة بحل ال
 التحويل الحقيقي بدلالة طيف والش.

 


