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ABSTRACT. This paper is a detailed tutorial exposition of the analysis of synchronous Boolean
networks via a particular matrix product called the Semi-Tensor Product (STP) of matrices, which
multiplies two matrices A,,, and B,, in which the column dimension n of the first matrix is not
necessarily equal to the row dimension p of the second matrix, but is possibly a multiple or divisor of it.
The state space of a Boolean network of n nodes is denoted herein by a vector of 2™ states in natural
order obtained as the STP of n 2-element vectors representing the network variables. A notable
contribution of the paper is that its matrix expression of logic follows the conventional truth-table order,
and not the reverse unfamiliar order followed so far by the STP community. We reproduce the STP
analysis of a classical example network. We include minute details that make the STP manipulations
easily accessible to and more understandable by their potential users. Our analysis points to more efficient
implementations of the STP solution in which the OR and XOR binary operations do not inflict a cost
more than they really deserve.

Keywords: Synchronous Boolean networks, Semi-tensor products, Quasi-commutativity, Size reduction,
Transition matrix.
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1. Introduction

A synchronous Boolean network model is the simplest possible conceptual model that
mimics or captures the essential features of many biological systems. Hence, this
model became a powerful tool for describing, analyzing, and simulating these systems.
The model consists of a set of n nodes, each of which is either in state 1 (On) or state
0 (Off) at any given time; t. Each node is updated at time (t + 1) by inputs from any
fixed subset of the set of nodes according to any desired logical rule [1-7].

Recently, the dynamics of synchronous Boolean networks have been
extensively studied by a novel matrix method utilizing a new matrix product, called
the Semi-Tensor Product (STP) of matrices [8-18]. Based on the STP paradigm, a
certain matrix expression of logic is used for the numerical derivation of the transition
matrix [T] of the Boolean network, which is called the structure matrix in [11]. This
matrix is then analyzed to deduce full information about the transient and cyclic
behavior of the network.

Despite the great success of the STP methodology, and despite the availability of
many reviews on it [11, 19-22], it does not seem to be assimilated rapidly or fully
enough by the scientific community, possibly due to its intrinsic difficulty. Since the
usefulness of the STP methodology definitely outweighs its difficulty, no effort should
be spared to make it easily accessible to researchers who need to utilize it. It is in this
spirit that we have written our extensive survey [22], and that we write this current paper
to popularize this long-awaited novel methodology.

While our earlier paper [22] is a tutorial exposition of the STP methodology
with a stress on its somewhat dubious general representation of Boolean functions,
this current paper deals with the definitely successful application of the STP
methodology to synchronous Boolean networks. In fact, it is a detailed tutorial
exposition of the analysis of synchronous Boolean networks via the STP
methodology. We employ a particular semi-tensor product of matrices, which
multiplies two matrices A,,,, and B, in which the column dimension n of the first
matrix is a multiple or divisor of the row dimension p of the second matrix. This
means that we do not require the STP methodology in full (we do not demand that n
be totally unrelated to p), but we utilize a simple special-case that represents a
minimal departure from the conventional wisdom. We review basic definitions and
operations of this particular STP, which particular emphasis on its use in swapping
vectors or matrices and in reducing the size of a matrix. We represent a switching
variable as a column vector of two elements, namely the complement of variable and
the variable itself. This representation is in contrast to the one common in STP
literature in which the order of these two elements is reversed. The state space of a
Boolean network of n nodes, therefore, is a vector of 2™ states in natural order
obtained as the STP of the n 2-element vectors representing the network variables.
We reproduce the STP analysis of a classical example network, making sure to
explain every minute detail and to expose every partial result. Through this detailed
example, we hope to have made the STP manipulations easily accessible to and
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more understandable by a larger group of readers. We hope also to circumvent
serious reservations against the STP application to problems involving Boolean
functions. One reservation is that an STP representation of a Boolean function keeps
records of both the function and its complement, and hence involves unnecessary
duplication [22]. While this reservation is applicable in general logic problems, it
vanishes in the case of the study of the state space of a Boolean network. In fact, the
2™ states for n variables reduce to 2 states for a single variable, and representing a
variable by a 2-element vector becomes acceptable (even a necessity) in this case.
Another reservation is that the STP solution uses the very general and costly
operation of real multiplication to implement binary operations on 1-bit operands,
such as the OR and XOR operations of Boolean algebra [22]. Our analysis herein
points to more efficient implementations of the STP solution in which these binary
operations do not inflict a cost more than they really deserve.

The rest of this paper is organized as follows. Section 2 reviews and explains
the basic definitions of the tensor product [22-25], the semi-tensor product [11, 19-22],
the swap matrix [11, 19], matrix expression of logic [11, 22, 26-30], and the power
reducing matrix [11]. A novel contribution of the paper is that its matrix expression of
logic follows the conventional truth-table order, and not the reverse order followed so
far by the STP community. Section 3 presents a detailed STP solution of a small
synchronous Boolean network, which culminates in the production of the correct
transition matrix of the network. Section 4 concludes the paper.

2. Basic Definitions
2.1 The Kronecker (Tensor) product (KP):

The Kronecker (tensor) product is defined for any two matrices regardless of their
dimensions [22-25]. Let A= {ai}, (1 <i<m, 1 <j<n)beamatrix of m rows
and n columns and B, be a matrix of p rows and q columns. The Kronecker product
(KP) of A and B is denoted by the operator "®",and is defined as the matrix
(A®B) = {a;;B} obtained by multiplying each element of A by the matrix B, namely

a; B a;,B .. ay,B
B B .. B

(A®B)mp><nq = 32:1 3232 : az?
amB apB ... ag,B

2.2 The Semi-Tensor Product (STP)

The left STP of two general matrices (usually called STP) is denoted by the
"' operator, and given by the conventional matrix product of the Kronecker
products of the respective matrices by appropriate unit matrices, namely
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Smquﬁ = Amxn X Bpyq = (Amxn®lﬁ)m%xc(3pxq®I%)qu%' @)

n

where the integer ¢ is the least common multiple (lcm) of the (totally
unrelated) integers n and p, while I, is the k x k unit (identity) matrix. The STP
inherits many properties of the conventional matrix product, and reduces to it when
n = p. In particular, the STP is associative, i.e.

AXx(BxC) =(AxB)xC 2

The STP of two column vectors Ap,,; and By, is the column vector S, 1
given by

Amxi % Bpyxt = (Amx1 ® 1,)(Bpx1 ® ) = (Amx1 ® 1) Bpxs = Amx1 ® Bpxy (3)

=[alb1 albz albp azbl azbz asz amb1 ambz ambp]T.

Important special cases of (1) are obtained when n is a multiple of p(n =
£p) or a divisor of it (p = ¥n). For the case n = ¥p, equation (1) reduces to

smx{’q = Amxn (Bpxq ® If)! (4)
while for the case p = ¥n, equation (1) reduces to
S{’qu = (Amxn ® If) Bpxq- (5)

2.3 The Swap Matrix

Conventional matrix multiplication (and consequently STP) is not
commutative in general. However, STP acquires some quasi-commutative properties
with the aid of auxiliary tools called swap matrices [11]. We restrict our attention
here to a particular square swap matrix Wy, of dimensions mp X mp that
enforces the quasi commutative relation

Bp><1 X Apx1 = W[mxp] Apx1 X Bp><1' (6)
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where (Amxq1 X Bpxq) is given by (3), while (Byy; X Apyq) is given by

Bp)(l X Amxl = Bpxl ® Amxl (7)
=[bja; bia, - bia, bya; bya, - bya, - byay bya, - byay]"

For the case m = p = 2, we have

[aib ab, a,b; a;b,]

b,a, 1 0 0 0 (8)
b,a 0 0 1 0

Bjxy X Ay = bzaj = Wiz Aoxy X Boyxy = 0 1 0 0
b,a, 0 0 0 1

For convenience, the vector (4,4, X B,y,) is not placed to the right of
W, 2, but instead, its transpose is placed above it. This is a well-known trick used
frequently to enhance the readability of conventional matrix multiplication [31].

For the case m = 2, and p = 4, we have

[aiby aib, aib; aby, azby ab, azb;  ayb,]

Bx1 X Azxq

rbiaq 7
bia,
bya,
b,a,
bsa,
bsa,
b,a,
Lb,a, ]
= W[2,4] Azx1
X Byx1 =

©)

CoococoocOoRm
Coocoomoo
Omoococooo
cCcoocococomo
cCoocomooo
cComoocooo

SO OO MR OOOO
o oo o000

2.4 Matrix Expression of Logic in Conventional Order

A logic variable (A switching variable or a two-valued Boolean variable) is
represented in the STP literature (see, e.g., [11, 22, 26-30]) as a 2 X 1 matrix of
components x; and x;, respectively. We will reverse these two components herein,
to have
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Xi~ X = [Ei]- (10)

Xi

Corresponding to the definition (10), the Boolean constants 0 and 1 are given by

0~8. = [(1)] (11)

1~ 82 [‘1’]. (12)

Here, the notation 6{1 denotes the jth column of the n X n identity matrix I,,.
Boolean operators are defined as matrices, called structure matrices. The unary NOT
operation (=) is expressed as

0 1

M. =82 1]=|; | (13)
so that
01 Ei]_o 1[Ei]_xi___
M_ xx; = 10 |><[xi =11 0] X, _[Yi]_x" (14)

Before introducing binary operators, we must see first how a set X of two
variables x; and x, are expressed:

X=[§1]»<H <[ ]wz clen)=[] )=

X1 X,

x1 [ ] X1 X,
x1 X1 X7 .
X1X7

The vector X constitutes the ba5|s on which binary operators are constructed.
As a result of the choice made in (10), it appears in the same order of what is used
conventionally in truth tables in classical textbooks on logic design or Boolean
algebra (see, e.g, [32]). The STP community typically produce X in an
unconventional reversed order.
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Table (1) summarizes (conventional-order) matrix representations of the six
commutative binary Boolean operators in addition to the IMPLY operator. The (+)
sign in Table (1) denotes the standard operation of real addition, but can be safely
understood herein to express the XOR or even the OR Boolean operation. The STP
representation of a n-variable switching function f takes the form of a 2 x 1 matrix
of the form

Mg X = Mpxx; XX, Xeow XX = MeX = Mp(xy X X5 X0 XXp), (16)

where My is a 2 X 2"binary matrix whose rows are the truth tables of fand
f, respectively, and X is a 2" x 1 vector of the minterms over the variables
X1, X5, , X, . FOr example, for n = 3, the vector X is given by

X=x,Xx, XX3=

e _ _ — o _ - _ _ _ T
[X1X2X3 X1X2X3 X1XpX3 X1XpX3 X1XpX3 X1XpX3 X1XpX3 X1XpX3] .(17)

2.5 The power reducing matrix

The power reducing matrix M, [11, p. 56-57] is a tool to invoke the
idempotency of the AND operator (x A x = x), via

xxXx= M,x, (18)
1 0
0 0

M,=6,[1 4]= o ol (19)
0 1

where both sides of (18) areequalto[x 0 0 x|



50 Ali Muhammad Ali Rushdi and Fares Ahmad Muhammad Ghaleb

3. A detailed Example

We give herein a detailed explanation of example 5.7 in p.118 of [11]. This example
deals with a 3-node synchronous Boolean network that has been analyzed also
in [2, 5], and is governed by the equations:

x.(t+ 1) = x,(t) A x3(8), (20a)
Xt +1) = 1@ x,(b), (20b)
x3(t+ 1) = x,(t). (20c)

In matrix form, these equations take the form

x,(t+1) = M, xx,(t) x x5(t), (21a)
X (t+1) = Mg x 85 x x,(t) = M_ x x,(t), (21b)
x3(t+ 1) = x,(t), (21c)

where M,, Mg, M_ are the structure matrices of the AND, XOR and NOT
operators, respectively.

We want to use (21) to deduce an equation of the form

Xt+1) = TX(), 22)

where

Xt+1)=xt+1)x x,(t+1) xx3(t + 1), (23)

X(t) = x,(t) x x,(t) > x3(0). (24)
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Are the exact state vectors [3, 6] taking the form (17). The matrix T is the
transition matrix of the Boolean network [3, 6]. This matrix is named L and called
the structure matrix by the STP community [11]. It can be used to construct the full
state transition diagram of the network, and to make subtle predications of both the
transient behavior and cyclic behavior of the network.

We now reproduce a derivation of X(t + 1) in terms of X(t) from [11, p. 118],
but with the several not-so-obvious gaps therein being filled with clarifying details.

X(t+1) = x;(t+ 1) % X0t + 1) % x3(t + 1)
= (M, x x,(t) X x3(t)) x (M_, x x,(t)) %X x,(t)
= M, x ((2(t) x x5(6)) x M) x,(8) = 25(t)
M, x((I,®M_) x (xz(t) X xs(t)) X xq (£) X x5(t).

Now

(xz(t) X xs(t)) X x1(t) X x5(t)
= Wi X x1(8) X (xz(t) X x3(t)) X x,(t)
W4 % x1(8) X x,(¢) X (x3 (t) x xz(t))
W4 X x1(8) X x5(8) X Wiy X xp(t) X x3(8)
Wipa X Iy ® Wiz X (x1 (t) X x, (t)) X (xz (t) x x5 (t))
]
]

W4 X (14®W[2,2]) X x X (xz(t) X X (t)) X x3(t)

Wipa X (I, @ Wipz) X x4(t) X (Mr x xz(t)) X x3(t)

W4 % (I4 ®W[2,2]) X (I,@M,.) X x;(t) X x,(t) X x5(t)
= Wy X (I4®W[2,2]) x (I,®M,) x X(t)

Xt+1) =M, x(I,OM_) x Wy, X (I,QW ) x (I,®M,) x X(t) (22a)

=T xX(t) = TX().

The transition matrix of the network is given by

T=M,,, XU, QM )gxg X Wpra, . X (L,Q[W2]) X (I,®M,)gy4,(25)

16x16

where
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Table (1). Structure matrices of seven binary Boolean operators for conventional truth-table order.

Operator

AND

OR

NAND

NOR

XOR

XNOR
Equivalence

Bi-
implication

Implication

Cons = LOM) = [7 7] ®

Symbol
0)

A

Abbreviated

structure

matrix
5,(1,1,1,2]
5,(1,2,2,2]
8,12,2,2,1]

5,02,1,1,1]

5,(1,2,2,1]

6,[2,1,1,2]

5,(2,2,1,2]

S OO M

Expanded structure matrix for

(o
F
b
b

o

= o O O

the basis:
% = = T
[ax, xix; %%, x1x5]

O OR RO RO R

[N

O OO =

coc oo
oo oo

mO OR RO RO onl

-

= o O O

i
i
o
o

o

(=R e R )

OO O M

|
|
|
|

x,0 x,
X1 X5 + X%, + xlfz]
X1X2
X1X2
X1Xy + XX, + X1%,
X1 X5 + X%, + X1 %,

X1X3

: ]

X1Xy + X%, + xlxz]
X, %,

[Elfz + xlxz]

X1Xy + XX,

[Elxz + xlfz]
X1X, + X%,

X1 Xy + XX + XX,

oo oo

_o oo !

“8x4
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(14®[W[2,2]D =
0

“716x16

16x16 —
1

D
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1 0
0 1
1 0
0 1
E16><8 = D16><16 [%9 CSX4 = D16X16(C®12) — D16><16
ri1 o _
0 0
0 1
0 0
0 0
1 0
0 0
0 1
= T
0 0
0 1
0 0
0 0
1 0
0 0
0 1
Lo e

Fioxs = Wi 41508 X E16xs = (W[2,4]®12)

8X8

where (W, 4®I,) is given by

16x16

E16><8

(26)
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1 0
0 1
Fiexs =

o

o

o

]

16x8
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01 0 0 0 0 0 01
10 00 0 0 0 0
0 0 0 1 0 0 0 0
0 0 10 0 0 0 0
LeM) =, | 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 10
“8x8

Gioxg = (I,®OM_)gyg X Figyg = ((I4®M—|)®12)16x16F16><8 (27)
where (I,®M_)®I, is given by
0 0 10 0 0 0 o 0 0 0 0 000 i 0 0
0 0 01 0 0 0 0 0 0 0 0 00 : 0 0
1 0 0 0 0 0 0 0 0 0 0 0 000 i 0 0
0 1 0 0 0 0 0 0 0 o 0 0 000 i 0 0
0 0 00 0 0 0 1 0 0 0 0 0 000 i 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 : 0 0
0 0 0 0 1 0 0 0 0 0 0 0 00 i 0 0
0 0 0 0 0 1 0 0 0 0 0 0 000 i 0 0
0 0 0 0 0 o 0 o 0 0 1 0 00 ¢ 0 0
0 0 0 0 0 o 0 o 0 0 0 1 00 i 0 0
0 0 0 0 0 0 0 o 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 o 0 o 0 0 0 0 1 0 0 o
0 0 0 0 0 o 0 o 0 0 0 0 0 1 0 0

“T16x16
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0 0 0 0o i 1 0 0 0
0 0 0 0o i 0 0 0 0
1 0 0 0o : 0 0 0 0
0 0 0 0o : 0 0 0 0
0 0 0 0 : 0 1 0 0
0 0 0 0 : 0 0 0 0
0 1 0 0 : 0 0 0 0
0 0 0 0 : 0 0 0 0
Gioxs = |
0 0 0 0 : 0 0 0 0
0 0 0 0 : 0 0 1 0
0 0 0 0 : 0 0 0 0
0 0 1 0 : 0 0 0 0
0 0 0 0 : 0 0 0 0
0 0 0 0 : 0 0 0 1
0 0 0 0 : 0 0 0 0
0 0 0 1 : 0 0 0 0

Tgys = (M )4 X Giexs = ((MA)2X4®I4)8><16616X8
where (M,),«4®I, is given by

rt 0 0 0 1 0 0 O 1 0 0 O 0 0 O
01 0 0 01 0 O 0 1 0 O 0 0 O
0 0 1 0 0 0 1 0 0 0 1 0 0 0 O
0 0 0 1 0 0 0 1 0o 0 0 1 0 0 O
0 0 0 O 0 0 0 O 0 0 0 O 1 0 O
0 0 0 O 0 0 0 O 0 0 0 O 0 1 0
0 0 0 O 0 0 0 O 0 0 0 O 0o 0 1
0 0 0 O 0 0 0 O 0 0 0 O 0 0 O

16x8

oo oo

Pm oo oO:

8X16

57
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00 0 0 11 00
00 0 0 0 0 1 0
11 0 0 0 0 0 0
0 0 1 0 0 0 0 0

T=1o0 o 00 0 0 0 0
00 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 1 0 0 00

Equation (26) expresses the transition matrix T when both its rows and
columns are referenced in the basis vector (17) of conventional order, which
corresponds to a state vector of the form

[000 001 010 011 100 101 110 111]".

The matrix T can be used to construct the network state diagram shown in
Fig. (1). Our matrix T is equivalent to the structure matrix L in [11, p. 118].
However, L has both its rows and columns referenced in a basis vector that is
equivalent to the one in (17) but in reverse order.

100 D= 000> ot >

Fig. (1). The state diagram or map of all possible trajectories of the states x;(t)x,(t)x3(t).

4. Conclusions

Despite the extensive computational successes of the STP approach, it is still very
slowly being accepted and assimilated by the scientific community. In particular, the
STP concepts, techniques, and applications have not found their way yet to popular
textbooks, though they are definitely expected and needed to do so sooner or later.

This paper is an attempt to popularize the STP approach by offering a
detailed lengthy example of one of its prominent and most successful applications,
namely, that of the analysis of synchronous Boolean networks. Besides overcoming
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the barrier against learning and utilizing STP concepts, the current exposition paves
the way towards an efficient implementation for the STP methodology when
handling binary matrices. Though the STP methodology is originally intended to
handle data over the real and complex fields, the current exposition clearly indicates
that the STP methodology can be directly tailored to efficiently handle the binary
OR and XOR operations in Boolean algebras. Such operations intrinsically demand
the use of single logic gates and should not be implemented as real addition
demanding the use of an array of full adders.
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