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ABSTRACT. This paper is a detailed tutorial exposition of the analysis of synchronous Boolean 
networks via a particular matrix product called the Semi-Tensor Product (STP) of matrices, which 

multiplies two matrices 𝑨𝑚𝑛 and 𝑩𝑝𝑞 in which the column dimension 𝑛 of the first matrix is not 

necessarily equal to the row dimension  𝑝  of the second matrix, but is possibly a multiple or divisor of it. 

The state space of a Boolean network of 𝑛 nodes is denoted herein by a vector of 2𝑛 states in natural 

order obtained as the STP of  𝑛 2-element vectors representing the network variables. A notable 

contribution of the paper is that its matrix expression of logic follows the conventional truth-table order, 

and not the reverse unfamiliar order followed so far by the STP community. We reproduce the STP 
analysis of a classical example network. We include minute details that make the STP manipulations 

easily accessible to and more understandable by their potential users. Our analysis points to more efficient 

implementations of the STP solution in which the 𝑂𝑅  and 𝑋𝑂𝑅  binary operations do not inflict a cost 

more than they really deserve. 

Keywords: Synchronous Boolean networks, Semi-tensor products, Quasi-commutativity, Size reduction, 

Transition matrix.  
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1. Introduction 

A synchronous Boolean network model is the simplest possible conceptual model that 

mimics or captures the essential features of many biological systems. Hence, this 

model became a powerful tool for describing, analyzing, and simulating these systems. 

The model consists of a set of n nodes, each of which is either in state 1 (On) or state 

0 (Off) at any given time; t. Each node is updated at time (t + 1) by inputs from any 

fixed subset of the set of nodes according to any desired logical rule [1-7].  

Recently, the dynamics of synchronous Boolean networks have been 

extensively studied by a novel matrix method utilizing a new matrix product, called 

the Semi-Tensor Product (STP) of matrices [8-18]. Based on the STP paradigm, a 

certain matrix expression of logic is used for the numerical derivation of the transition 

matrix [T] of the Boolean network, which is called the structure matrix in [11]. This 

matrix is then analyzed to deduce full information about the transient and cyclic 

behavior of the network. 

Despite the great success of the STP methodology, and despite the availability of 

many reviews on it [11, 19-22], it does not seem to be assimilated rapidly or fully 

enough by the scientific community, possibly due to its intrinsic difficulty. Since the 

usefulness of the STP methodology definitely outweighs its difficulty, no effort should 

be spared to make it easily accessible to researchers who need to utilize it. It is in this 

spirit that we have written our extensive survey [22], and that we write this current paper 

to popularize this long-awaited novel methodology.  

While our earlier paper [22] is a tutorial exposition of the STP methodology 

with a stress on its somewhat dubious general representation of Boolean functions, 

this current paper deals with the definitely successful application of the STP 

methodology to synchronous Boolean networks. In fact, it is a detailed tutorial 

exposition of the analysis of synchronous Boolean networks via the STP 

methodology. We employ a particular semi-tensor product of matrices, which 

multiplies two matrices 𝑨𝑚𝑛 and 𝑩𝑝𝑞 in which the column dimension 𝑛 of the first 

matrix is a multiple or divisor of the row dimension  𝑝  of the second matrix. This 

means that we do not require the STP methodology in full (we do not demand that 𝑛 

be totally unrelated to 𝑝), but we utilize a simple special-case that represents a 

minimal departure from the conventional wisdom. We review basic definitions and 

operations of this particular STP, which particular emphasis on its use in swapping 

vectors or matrices and in reducing the size of a matrix. We represent a switching 

variable as a column vector of two elements, namely the complement of variable and 

the variable itself. This representation is in contrast to the one common in STP 

literature in which the order of these two elements is reversed. The state space of a 

Boolean network of 𝑛 nodes, therefore, is a vector of 2𝑛 states in natural order 

obtained as the STP of the 𝑛 2-element vectors representing the network variables. 

We reproduce the STP analysis of a classical example network, making sure to 

explain every minute detail and to expose every partial result. Through this detailed 

example, we hope to have made the STP manipulations easily accessible to and 
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more understandable by a larger group of readers. We hope also to circumvent 

serious reservations against the STP application to problems involving Boolean 

functions. One reservation is that an STP representation of a Boolean function keeps 

records of both the function and its complement, and hence involves unnecessary 

duplication [22]. While this reservation is applicable in general logic problems, it 

vanishes in the case of the study of the state space of a Boolean network. In fact, the 

2𝑛  states for 𝑛 variables reduce to 2  states for a single variable, and representing a 

variable by a 2-element vector becomes acceptable (even a necessity) in this case. 

Another reservation is that the STP solution uses the very general and costly 

operation of real multiplication to implement binary operations on 1-bit operands, 

such as the 𝑂𝑅 and 𝑋𝑂𝑅 operations of Boolean algebra [22]. Our analysis herein 

points to more efficient implementations of the STP solution in which these binary 

operations do not inflict a cost more than they really deserve. 

The rest of this paper is organized as follows. Section 2 reviews and explains 

the basic definitions of the tensor product [22-25], the semi-tensor product [11, 19-22], 

the swap matrix [11, 19], matrix expression of logic [11, 22, 26-30], and the power 

reducing matrix [11]. A novel contribution of the paper is that its matrix expression of 

logic follows the conventional truth-table order, and not the reverse order followed so 

far by the STP community. Section 3 presents a detailed STP solution of a small 

synchronous Boolean network, which culminates in the production of the correct 

transition matrix of the network. Section 4 concludes the paper. 

 

2. Basic Definitions 

2.1 The Kronecker (Tensor) product (KP): 

The Kronecker (tensor) product is defined for any two matrices regardless of their 

dimensions [22-25]. Let 𝑨𝑚×𝑛= {aij}, (1 ≤ i ≤ 𝑚, 1 ≤ j ≤ 𝑛) be a matrix of m rows 

and n columns and 𝑩𝑝×𝑞  be a matrix of p rows and q columns. The Kronecker product 

(KP) of A and B is denoted by the operator "⨂", and is defined as the matrix 

(𝑨⨂𝑩) = {aij𝑩} obtained by multiplying each element of 𝑨 by the matrix 𝑩, namely 

 

(𝑨⨂𝑩)𝑚𝑝×𝑛𝑞 = [

a11𝑩 a12𝑩 … a1𝑛𝑩
a21𝑩 a22𝑩 … a2𝑛𝑩

⋮ ⋮ ⋮ ⋮
a𝑚1𝑩 a𝑚2𝑩 … a𝑚𝑛𝑩

]. 

 

2.2 The Semi-Tensor Product (STP) 

The left STP of two general matrices (usually called STP) is denoted by the 

′ ⋉ ′ operator, and given by the conventional matrix product of the Kronecker 

products of the respective matrices by appropriate unit matrices, namely  
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𝑺𝑚c
n×q

c
p

= 𝑨m×n  ⋉  𝑩p×q = (𝑨m×n ⨂ 𝑰c
n
)m

c
n×c(𝑩p×q ⨂ 𝑰c

p
)c×qc

p
, (1) 

 

where the integer c is the least common multiple (lcm) of the (totally 

unrelated) integers n and p, while 𝐼𝑘 is the 𝑘 × 𝑘 unit (identity) matrix. The STP 

inherits many properties of the conventional matrix product, and reduces to it when 

𝑛 = 𝑝. In particular, the STP is associative, i.e. 

 

𝑨 ⋉ (𝑩 ⋉ 𝑪) = (𝑨 ⋉ 𝑩) ⋉ 𝑪   (2) 

 

The STP of two column vectors 𝑨m×1 and 𝑩p×1  is the column vector 𝑺𝑚𝑝×1 

given by 

 

𝑨m×1 ⋉ 𝑩p×1 = (𝑨m×1 ⨂  𝑰p)(𝑩p×1 ⨂ 𝑰1) = (𝑨m×1 ⨂ 𝑰p) 𝑩p×1 = 𝑨m×1 ⨂ 𝑩p×1  (3) 

= [a1b1   a1b2    ⋯   a1bp   a2b1   a2b2    ⋯   a2bp    ⋯   amb1    amb2    ⋯   ambp]
T. 

 

Important special cases of (1) are obtained when n is a multiple of 𝑝(𝑛 =
ℓ𝑝) or a divisor of it (𝑝 =  ℓ𝑛). For the case 𝑛 = ℓ𝑝, equation (1) reduces to  

 

𝑺m×ℓq =  𝑨m×n  (𝑩p×q  ⨂  𝑰ℓ),   (4) 

 

while for the case 𝑝 = ℓ𝑛, equation (1) reduces to   

 

𝑺ℓm×q = (𝑨m×n  ⨂   𝑰ℓ)  𝑩p×q.   (5) 

 

2.3 The Swap Matrix 

Conventional matrix multiplication (and consequently STP) is not 

commutative in general. However, STP acquires some quasi-commutative properties 

with the aid of auxiliary tools called swap matrices [11]. We restrict our attention 

here to a particular square swap matrix 𝑾[m,p] of dimensions 𝑚𝑝 × 𝑚𝑝 that 

enforces the quasi commutative relation  

 

𝑩p×1 ⋉  𝑨m×1 = 𝑾[m×p]  𝑨m×1 ⋉  𝑩p×1,   (6) 
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where (𝑨m×1 ⋉  𝑩p×1) is given by (3), while (𝑩p×1 ⋉  𝑨m×1) is given by  

 

𝑩p×1 ⋉  𝑨m×1 = 𝑩p×1 ⨂  𝑨m×1   (7) 

= [𝑏1𝑎1   𝑏1𝑎2    ⋯   𝑏1𝑎𝑚   𝑏2𝑎1   𝑏2𝑎2    ⋯   𝑏2𝑎𝑚    ⋯   𝑏𝑝𝑎1   𝑏𝑝𝑎2    ⋯   𝑏𝑝𝑎𝑚]𝑇. 

 

For the case 𝑚 = 𝑝 = 2, we have  

 

 

𝑩2×1 ⋉ 𝑨2×1 = [

𝑏1𝑎1

𝑏1𝑎2

𝑏2𝑎1

𝑏2𝑎2

] =  𝑾[2,2] 𝑨2×1 ⋉ 𝑩2×1 = 

 

 

[𝑎1𝑏1 

[

𝟏
0
0
0

  

 

𝑎1𝑏2 

0
0
𝟏
0

 

 

𝑎2𝑏1 

0
𝟏
0
0

 

 

𝑎2𝑏2] 

      

0
0
0
𝟏

] 

 

 

(8) 

For convenience, the vector (𝑨2×1 ⋉ 𝑩2×1) is not placed to the right of 

𝑾[2,2], but instead, its transpose is placed above it. This is a well-known trick used 

frequently to enhance the readability of conventional matrix multiplication [31]. 

For the case 𝑚 = 2, and 𝑝 = 4, we have  

 

 

𝑩4×1 ⋉ 𝑨2×1

= 

[
 
 
 
 
 
 
 
𝑏1𝑎1

𝑏1𝑎2

𝑏2𝑎1

𝑏2𝑎2

𝑏3𝑎1

𝑏3𝑎2

𝑏4𝑎1

𝑏4𝑎2]
 
 
 
 
 
 
 

=  𝑾[2,4] 𝑨2×1

⋉ 𝑩4×1 = 

[𝑎1𝑏1 𝑎1𝑏2 𝑎1𝑏3 𝑎1𝑏4 𝑎2𝑏1 𝑎2𝑏2 𝑎2𝑏3 𝑎2𝑏4]  

[
 
 
 
 
 
 
 
𝟏
0
0
0
0
0
0
0

 

0
0
𝟏
0
0
0
0
0

 

0
0
0
0
𝟏
0
0
0

 

0
0
0
0
0
0
𝟏
0

 

0
𝟏
0
0
0
0
0
0

 

0
0
0
𝟏
0
0
0
0

 

0
0
0
0
0
𝟏
0
0

 

0
0
0
0
0
0
0
𝟏]
 
 
 
 
 
 
 

 

 

 

(9) 

2.4 Matrix Expression of Logic in Conventional Order 

A logic variable (A switching variable or a two-valued Boolean variable) is 

represented in the STP literature (see, e.g., [11, 22, 26-30]) as a 2 × 1 matrix of 

components 𝑥𝑖 and  𝑥𝑖, respectively. We will reverse these two components herein, 

to have 
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𝑥𝑖  ~ 𝒙𝑖 = [
𝑥𝑖

𝑥𝑖
].    (10) 

 

Corresponding to the definition (10), the Boolean constants 0 and 1 are given by 

 

0 ~ 𝛅2
1 = [

1
0
],    (11) 

 

1 ~ 𝛅2
2 = [

0
1
].    (12) 

 

Here, the notation 𝜹𝑛
𝑗
 denotes the jth column of the 𝑛 × 𝑛 identity matrix 𝑰𝑛. 

Boolean operators are defined as matrices, called structure matrices. The unary NOT 

operation (¬) is expressed as  

 

𝑴¬ = 𝛅2[2 1] = [
0 1
1 0

],   (13) 

so that  

𝑴¬ ⋉ 𝒙i = [
0 1
1 0

]  ⋉ [
𝑥𝑖

𝑥𝑖
] = [

0 1
1 0

] [
𝑥𝑖

𝑥𝑖
] = [

𝑥i

𝑥i
] =  𝒙i. (14) 

 

Before introducing binary operators, we must see first how a set X of two 

variables 𝑥1 and 𝑥2 are expressed: 

 

𝑿 = [ 
𝑥1

𝑥1
]  ⋉  [

𝑥2

𝑥2
] = ([ 

𝑥1

𝑥1
]  ⨂𝑰2) ([ 

𝑥2

𝑥2
] ⨂𝑰1) = [

𝑥1𝑰2

𝑥1𝑰2
]  [

𝑥2𝑰1

𝑥2𝑰1
] =  (15) 

[

𝑥1 0

0 𝑥1

𝑥1 0
0 𝑥1

] [
𝑥2

𝑥2
] =

[
 
 
 
𝑥1𝑥2

𝑥1𝑥2

𝑥1𝑥2

𝑥1𝑥2]
 
 
 

 . 

The vector X constitutes the basis on which binary operators are constructed. 

As a result of the choice made in (10), it appears in the same order of what is used 

conventionally in truth tables in classical textbooks on logic design or Boolean 

algebra (see, e.g, [32]). The STP community typically produce X in an 

unconventional reversed order. 
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Table (1) summarizes (conventional-order) matrix representations of the six 

commutative binary Boolean operators in addition to the IMPLY operator. The (+) 

sign in Table (1) denotes the standard operation of real addition, but can be safely 

understood herein to express the XOR or even the OR Boolean operation. The STP 

representation of a n-variable switching function 𝑓 takes the form of a 2 × 1 matrix 

of the form  

 

𝑴𝑓 ⋉ 𝑿 =  𝑴𝑓 ⋉ 𝒙1 ⋉ 𝒙2 ⋉ ⋯ ⋉ 𝒙𝑛 = 𝑴𝑓𝑿 =  𝑴𝑓(𝒙1 ⋉ 𝒙2 ⋉ ⋯ ⋉ 𝒙𝑛),    (16) 

 

where 𝑴𝒇 is a 2 × 2𝑛binary matrix whose rows are the truth tables of 𝑓and 

𝑓, respectively, and 𝑿 is a 2n × 1 vector of the minterms over the variables 

𝑥1, 𝑥2, ⋯ , 𝑥𝑛 . For example, for n = 3, the vector 𝑿 is given by  

 

𝑿 = 𝒙1 ⋉ 𝒙2 ⋉ 𝒙3 = 

[𝑥1𝑥2𝑥3   𝑥1𝑥2𝑥3   𝑥1𝑥2𝑥3   𝑥1𝑥2𝑥3   𝑥1𝑥2𝑥3   𝑥1𝑥2𝑥3   𝑥1𝑥2𝑥3   𝑥1𝑥2𝑥3]
𝑇 .(17) 

 

2.5 The power reducing matrix 

The power reducing matrix 𝑴𝑟 [11, p. 56-57] is a tool to invoke the 

idempotency of the AND operator (𝑥 ∧ 𝑥 = 𝑥), via 

 

𝒙 ⋉ 𝒙 =  𝑀𝑟 𝒙,    (18) 

𝑴𝑟 = 𝜹4 [1 4] =  [

𝟏 0
0 0
0 0
0 𝟏

],   (19) 

 

where both sides of (18) are equal to [𝑥 0 0 𝑥]𝑇.  

 

  

(17) 
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3. A detailed Example 

We give herein a detailed explanation of example 5.7 in p.118 of [11]. This example 

deals with a 3-node synchronous Boolean network that has been analyzed also  

in [2, 5], and is governed by the equations:  

 

𝑥1(𝑡 + 1) =  𝑥2(𝑡) ∧  𝑥3(𝑡),  (20a) 

 

𝑥2(𝑡 + 1) =  1⨁ 𝑥1(𝑡),   (20b) 

 

𝑥3(𝑡 + 1) =  𝑥2(𝑡).   (20c) 

 

In matrix form, these equations take the form  

 

𝒙1(𝑡 + 1) =  𝑴⋏ ⋉ 𝒙2(𝑡) ⋉ 𝒙3(𝑡),  (21a) 

 

𝒙2(𝑡 + 1) =  𝑴⨁  ⋉  𝜹2
2  ⋉  𝒙1(𝑡) =  𝑴¬  ⋉  𝒙1(𝑡),  (21b) 

 

𝒙3(𝑡 + 1) =  𝒙2(𝑡),    (21c) 

 

where 𝑴⋏, 𝑴⨁, 𝑴¬ are the structure matrices of the AND, XOR and NOT 

operators, respectively.  

We want to use (21) to deduce an equation of the form 

 

𝑿(𝑡 + 1) =  𝑻 𝑿(𝑡),    (22) 

 

where  

 

𝑿(𝑡 + 1) =  𝒙1(𝑡 + 1) ⋉ 𝒙2(𝑡 + 1) ⋉ 𝒙3(𝑡 + 1),  (23) 

 

𝑿(𝑡) =  𝒙1(𝑡) ⋉ 𝒙2(𝑡) ⋉ 𝒙3(𝑡).    (24) 
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Are the exact state vectors [3, 6] taking the form (17). The matrix T is the 

transition matrix of the Boolean network [3, 6]. This matrix is named L and called 

the structure matrix by the STP community [11]. It can be used to construct the full 

state transition diagram of the network, and to make subtle predications of both the 

transient behavior and cyclic behavior of the network. 

We now reproduce a derivation of 𝑿(𝑡 + 1) in terms of 𝑿(𝑡) from [11, p. 118], 

but with the several not-so-obvious gaps therein being filled with clarifying details. 

𝑿(𝑡 + 1) =  𝒙1(𝑡 + 1) ⋉ 𝒙2(𝑡 + 1) ⋉ 𝒙3(𝑡 + 1)

= (𝑴⋏  ⋉  𝒙2(𝑡) ⋉ 𝒙3(𝑡)) ⋉ (𝑴¬  ⋉  𝒙1(𝑡))  ⋉ 𝒙2(𝑡)

=  𝑴⋏  ⋉ ((𝒙2(𝑡) ⋉ 𝒙3(𝑡)) ⋉ 𝑴¬) ⋉ 𝒙1(𝑡) ⋉ 𝒙2(𝑡)

=  𝑴⋏  ⋉ ((𝑰4 ⨂𝑴¬) ⋉ (𝒙2(𝑡) ⋉ 𝒙3(𝑡)) ⋉ 𝒙1(𝑡) ⋉  𝒙2(𝑡). 

 

Now  

 

(𝒙2(𝑡) ⋉ 𝒙3(𝑡)) ⋉ 𝒙1(𝑡) ⋉ 𝒙2(𝑡)

=  𝑾[2,4]  ⋉  𝒙1(𝑡) ⋉ (𝒙2(𝑡) ⋉ 𝒙3(𝑡))  ⋉ 𝒙2(𝑡)

=  𝑾[2,4]  ⋉  𝒙1(𝑡) ⋉ 𝒙2(𝑡) ⋉ (𝒙3(𝑡) ⋉ 𝒙2(𝑡))

=  𝑾[2,4]  ⋉  𝒙1(𝑡) ⋉ 𝒙2(𝑡) ⋉  𝑾[2,2]  ⋉ 𝒙2(𝑡) ⋉ 𝒙3(𝑡)

=  𝑾[2,4]  ⋉ (𝑰4 ⨂ 𝑾[2,2]) ⋉ (𝒙1(𝑡) ⋉ 𝒙2(𝑡)) ⋉ (𝒙2(𝑡) ⋉ 𝒙3(𝑡))

=  𝑾[2,4]  ⋉ (𝑰4⨂𝑾[2,2]) ⋉ 𝒙1 ⋉ (𝒙2(𝑡) ⋉ 𝒙2(𝑡)) ⋉ 𝒙3(𝑡)

=  𝑾[2,4]  ⋉ (𝑰4 ⨂ 𝑾[2,2])  ⋉  𝒙1(𝑡) ⋉ (𝑴𝑟  ⋉  𝒙2(𝑡)) ⋉ 𝒙3(𝑡)

= 𝑾[2,4]  ⋉ (𝑰4 ⨂𝑾[2,2]) ⋉ (𝑰2⨂𝑴𝑟) ⋉ 𝒙1(𝑡) ⋉ 𝒙2(𝑡) ⋉ 𝒙3(𝑡)

=  𝑾[2,4]  ⋉ (𝑰4⨂𝑾[2,2]) ⋉ (𝑰2⨂𝑴𝑟) ⋉ 𝑿(𝑡)  

𝑿(𝑡 + 1) =  𝑴⋏  ⋉ (𝑰4⨂𝑴¬) ⋉ 𝑾[2,4]  ⋉ (𝑰4⨂𝑾[2,2]) ⋉ (𝑰2⨂𝑴𝑟) ⋉ 𝑿(𝑡)  (22a) 

= 𝑻 ⋉ 𝑿(𝑡) =  𝑻 𝑿(𝑡). 

 

The transition matrix of the network is given by 

 

𝑻 =  𝑴⋏2×4
 ⋉ (𝑰4 ⨂𝑴¬)8×8 ⋉ 𝑾[2,4]8×8

 ⋉ (𝑰4⨂[𝑾[2,2]])16×16
 ⋉ (𝑰2⨂𝑴𝑟)8×4,(25) 

 

where 
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Table (1). Structure matrices of seven binary Boolean operators for conventional truth-table order. 

 

𝑥1O 𝑥2 

Expanded structure matrix  for 

the basis: 

[𝑥1𝑥2   𝑥1𝑥2   𝑥1𝑥2   𝑥1𝑥2]
𝑇 

Abbreviated 

structure 

matrix 

Symbol  

(O) 

Operator  

[
𝑥1𝑥2 + 𝑥̅1𝑥2 + 𝑥1𝑥̅2

𝑥1𝑥2
]   [

𝟏       𝟏       𝟏       𝟎
𝟎     𝟎       𝟎       𝟏

] 𝜹𝟐[𝟏, 𝟏, 𝟏, 𝟐] ∧ AND 

[
𝑥̅1𝑥̅2

𝑥1𝑥2 + 𝑥1𝑥̅2 + 𝑥1𝑥2
] [

𝟏       𝟎       𝟎       𝟎
𝟎       𝟏       𝟏       𝟏

] 𝜹𝟐[𝟏, 𝟐, 𝟐, 𝟐] ∨ OR 

[
𝑥1𝑥2

𝑥1𝑥2 + 𝑥̅1𝑥2 + 𝑥1𝑥̅2
] [

𝟎       𝟎       𝟎       𝟏
𝟏       𝟏       𝟏       𝟎

] 𝜹𝟐[𝟐, 𝟐, 𝟐, 𝟏] ↑ NAND 

[
𝑥1𝑥2 + 𝑥1𝑥̅2 + 𝑥1𝑥2

𝑥̅1𝑥̅2
] [

𝟎       𝟏       𝟏       𝟏
𝟏       𝟎       𝟎       𝟎

] 𝜹𝟐[𝟐, 𝟏, 𝟏, 𝟏] ↓ NOR 

[
𝑥1𝑥2 + 𝑥1𝑥2

𝑥1𝑥2 + 𝑥1𝑥2
] [

𝟏       𝟎       𝟎       𝟏
𝟎       𝟏       𝟏       𝟎

] 𝜹𝟐[𝟏, 𝟐, 𝟐, 𝟏] ⊕ XOR 

 

[
𝑥1𝑥2 + 𝑥1𝑥2

𝑥1𝑥2 + 𝑥1𝑥2
] 

 

[
𝟎       𝟏       𝟏       𝟎
𝟏       𝟎       𝟎       𝟏

] 

 

𝜹𝟐 [𝟐, 𝟏, 𝟏, 𝟐] 

 

⨀ XNOR 

≡ Equivalence 

↔ Bi-

implication 

[
𝑥1𝑥2

𝑥1𝑥2 + 𝑥1𝑥2 + 𝑥1𝑥2
] [

𝟎       𝟎       𝟏       𝟎
𝟏       𝟏       𝟎       𝟏

] 𝜹𝟐[𝟐, 𝟐, 𝟏, 𝟐] → Implication 

 

𝑪8×4 = (𝑰2⨂𝑴r) = ([
𝟏 0
0 𝟏

] ⨂ [

𝟏 0
0 0
0 0
0 𝟏

]) =

[
 
 
 
 
 
 
 
 
𝟏 0 ⋮ 0 0
0 0 ⋮ 0 0
0 0 ⋮ 0 0
0 𝟏 ⋮ 0 0
⋯ ⋯ ⋮ ⋯ ⋯
0 0 ⋮ 𝟏 0
0 0 ⋮ 0 0
0 0 ⋮ 0 0
0 0 ⋮ 0 𝟏 ]

 
 
 
 
 
 
 
 

8×4
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𝑫16×16 = (𝑰4⨂[𝑾[2,2]]) = ([

𝟏 0 0 0
0 𝟏 0 0
0 0 𝟏 0
0 0 0 𝟏

] ⨂ [

𝟏 0 0 0
0 0 𝟏 0
0 𝟏 0 0
0 0 0 𝟏

])

=  

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝟏 0 0 0 ⋮
0 0 𝟏 0 ⋮
0 𝟏 0 0 ⋮
0 0 0 𝟏 ⋮
⋯ ⋯ ⋯ ⋯ ⋯

0 0 0 0 ⋮
0 0 0 0 ⋮
0 0 0 0 ⋮
0 0 0 0 ⋮
⋯ ⋯ ⋯ ⋯ ⋯

0 0 0 0 ⋮
0 0 0 0 ⋮
0 0 0 0 ⋮
0 0 0 0 ⋮
⋯ ⋯ ⋯ ⋯ ⋯

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
⋯ ⋯ ⋯ ⋯

0 0 0 0 ⋮
0 0 0 0 ⋮
0 0 0 0 ⋮
0 0 0 0 ⋮
⋯ ⋯ ⋯ ⋯ ⋯

𝟏 0 0 0 ⋮
0 0 𝟏 0 ⋮
0 𝟏 0 0 ⋮
0 0 0 𝟏 ⋮
⋯ ⋯ ⋯ ⋯ ⋯

0 0 0 0 ⋮
0 0 0 0 ⋮
0 0 0 0 ⋮
0 0 0 0 ⋮
⋯ ⋯ ⋯ ⋯ ⋯

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
⋯ ⋯ ⋯ ⋯

0 0 0 0 ⋮
0 0 0 0 ⋮
0 0 0 0 ⋮
0 0 0 0 ⋮
⋯ ⋯ ⋯ ⋯ ⋯

0 0 0 0 ⋮
0 0 0 0 ⋮
0 0 0 0 ⋮
0 0 0 0 ⋮
⋯ ⋯ ⋯ ⋯ ⋯

𝟏 0 0 0 ⋮
0 0 𝟏 0 ⋮
0 𝟏 0 0 ⋮
0 0 0 𝟏 ⋮
⋯ ⋯ ⋯ ⋯ ⋯

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
⋯ ⋯ ⋯ ⋯

0 0 0 0 ⋮
0 0 0 0 ⋮
0 0 0 0 ⋮
0 0 0 0 ⋮
⋯ ⋯ ⋯ ⋯ ⋯

0 0 0 0 ⋮
0 0 0 0 ⋮
0 0 0 0 ⋮
0 0 0 0 ⋮
⋯ ⋯ ⋯ ⋯ ⋯

0 0 0 0 ⋮
0 0 0 0 ⋮
0 0 0 0 ⋮
0 0 0 0 ⋮
⋯ ⋯ ⋯ ⋯ ⋯

𝟏 0 0 0
0 0 𝟏 0
0 1 0 0
0 0 0 𝟏
⋯ ⋯ ⋯ ⋯]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

16×16
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𝑬16×8 = 𝑫16×16  ⋉  𝑪8×4 = 𝑫16×16(𝑪⨂𝑰2) = 𝑫16×16

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝟏 0 ⋮
0 𝟏 ⋮
⋯ ⋯ ⋯
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0
0 0
⋯ ⋯
0 0
0 0
⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮
𝟏 0 ⋮
0 𝟏 ⋮
⋯ ⋯ ⋮

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0
0 0
⋯ ⋯
0 0
0 0
⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

𝟏 0 ⋮
0 𝟏 ⋮
⋯ ⋯ ⋮
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0
0 0
⋯ ⋯
0 0
0 0
⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0
0 0
⋯ ⋯
𝟏 0
0 𝟏
⋯ ⋯]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝟏 0 ⋮
0 0 ⋮
0 𝟏 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0 ⋮
0 0 ⋮
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0 ⋮
0 0 ⋮
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0
0 0
0 0
0 0
⋯ ⋯

0 0 ⋮
0 0 ⋮
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0 ⋮
𝟏 0 ⋮
0 0 ⋮
0 𝟏 ⋮
⋯ ⋯ ⋮

0 0 ⋮
0 0 ⋮
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0
0 0
0 0
0 0
⋯ ⋯

0 0 ⋮
0 0 ⋮
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0 ⋮
0 0 ⋮
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

𝟏 0 ⋮
0 0 ⋮
0 𝟏 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0
0 0
0 0
0 0
⋯ ⋯

0 0 ⋮
0 0 ⋮
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0
𝟏 0
0 0
0 𝟏
⋯ ⋯]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

16×8

 

 

𝑭16×8 = 𝑾[2,4]8×8
⋉ 𝑬16×8 = (𝑾[2,4]⨂𝑰2)16×16

𝑬16×8 (26) 

 𝑤ℎ𝑒𝑟𝑒 (𝑾[2,4]⨂𝑰2)  is given by 
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[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
⋯ ⋯ ⋯
𝟏 0 ⋮
0 𝟏 ⋮
⋯ ⋯ ⋯

⋯ ⋯ ⋯
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

⋯ ⋯ ⋯
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

⋯ ⋯ ⋯
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

⋯ ⋯ ⋯
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

⋯ ⋯ ⋯
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

⋯ ⋯ ⋯
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

⋯ ⋯
0 0
0 0
⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

𝟏 0 ⋮
0 𝟏 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0
0 0
⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

𝟏 0 ⋮
0 𝟏 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0
0 0
⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

𝟏 0 ⋮
0 𝟏 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0
0 0
⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

𝟏 0 ⋮
0 𝟏 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0
0 0
⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

𝟏 0 ⋮
0 𝟏 ⋮
⋯ ⋯ ⋯

0 0
0 0
⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

𝟏 0 ⋮
0 𝟏 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0
0 0
⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

𝟏 0
0 𝟏
⋯ ⋯]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

𝑭16×8  =           

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝟏 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0
0 0
⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

𝟏 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0
0 0
⋯ ⋯

0 𝟏 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0
0 0
⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 𝟏 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0
0 0
⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0 ⋮
𝟏 0 ⋮
⋯ ⋯ ⋮

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0
0 0
⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0
𝟏 0
⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0 ⋮
0 𝟏 ⋮
⋯ ⋯ ⋮

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0
0 0
⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0
0 𝟏
⋯ ⋯]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

16×8
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(𝑰4⨂𝑴¬) =  

[
 
 
 
 
 
 
 
 
 
 
 
0 𝟏 ⋮
𝟏 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0
0 0
⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 𝟏 ⋮
𝟏 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0
0 0
⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 𝟏 ⋮
𝟏 0 ⋮
⋯ ⋯ ⋯

0 0
0 0
⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 𝟏
𝟏 0
⋯ ⋯]

 
 
 
 
 
 
 
 
 
 
 

8×8

 

 

𝑮16×8 = (𝑰4⨂𝑴¬)8×8 ⋉ 𝑭16×8 = ((𝑰4⨂𝑴¬)⨂𝑰2)16×16
𝑭16×8 (27) 

𝑤ℎ𝑒𝑟𝑒  (𝑰4⨂𝑴¬)⨂𝑰2  is given by 

 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
⋯ ⋯ ⋯
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

𝟏 0 ⋮
0 𝟏 ⋮
⋯ ⋯ ⋯

⋯ ⋯ ⋯
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

⋯ ⋯ ⋯
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

⋯ ⋯ ⋯
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

⋯ ⋯ ⋯
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

⋯ ⋯ ⋯
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

⋯ ⋯
0 0
0 0
⋯ ⋯

𝟏 0 ⋮
0 𝟏 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0
0 0
⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

00 00 ⋮
00 00 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

𝟏 0 ⋮
0 𝟏 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0
0 0
⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

𝟏 0 ⋮
0 𝟏 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0
0 0
⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

𝟏 0 ⋮
0 𝟏 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0
0 0
⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

𝟏 0 ⋮
0 𝟏 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0
0 0
⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

𝟏 0
0 𝟏
⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

𝟏 0 ⋮
0 𝟏 ⋮
⋯ ⋯ ⋯

0 0
0 0
⋯ ⋯]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

16×16
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𝑮16×8 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
⋯ ⋯
0 ⋮
0 ⋮
⋯ ⋯

⋯ ⋯
0 ⋮
0 ⋮
⋯ ⋯

⋯ ⋯
0 ⋮
0 ⋮
⋯ ⋯

⋯ ⋯
0 ⋮
0 ⋮
⋯ ⋯

⋯ ⋯
𝟏 ⋮
0 ⋮
⋯ ⋯

⋯ ⋯
0 ⋮
0 ⋮
⋯ ⋯

⋯ ⋯
0 ⋮
0 ⋮
⋯ ⋯

⋯
0
0
⋯

𝟏 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0
0
⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

𝟏 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0
0
⋯

0 ⋮
0 ⋮
⋯ ⋯

𝟏 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0
0
⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
𝟏 ⋮
⋯ ⋯

0
0
⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
𝟏 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0
0
⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0
𝟏
⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
𝟏 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0
0
⋯]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

16×8

 

 

𝑻8×8 = (𝑴⋏)2×4 ⋉ 𝐺16×8 = ((𝑴⋏)2×4⨂𝑰4)8×16𝑮16×8 

𝑤ℎ𝑒𝑟𝑒 (𝑴⋏)2×4⨂𝑰4 is given by 

 

[
 
 
 
 
 
 
 
 
 
𝟏 0 0 0 ⋮
0 𝟏 0 0 ⋮
0 0 𝟏 0 ⋮
0 0 0 𝟏 ⋮
⋯ ⋯ ⋯ ⋯ ⋯

𝟏 0 0 0 ⋮
0 𝟏 0 0 ⋮
0 0 𝟏 0 ⋮
0 0 0 𝟏 ⋮
⋯ ⋯ ⋯ ⋯ ⋯

𝟏 0 0 0 ⋮
0 𝟏 0 0 ⋮
0 0 𝟏 0 ⋮
0 0 0 𝟏 ⋮
⋯ ⋯ ⋯ ⋯ ⋯

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
⋯ ⋯ ⋯ ⋯

0 0 0 0 ⋮
0 0 0 0 ⋮
0 0 0 0 ⋮
0 0 0 0 ⋮
⋯ ⋯ ⋯ ⋯ ⋯

0 0 0 0 ⋮
0 0 0 0 ⋮
0 0 0 0 ⋮
0 0 0 0 ⋮
⋯ ⋯ ⋯ ⋯ ⋯

0 0 0 0 ⋮
0 0 0 0 ⋮
0 0 0 0 ⋮
0 0 0 0 ⋮
⋯ ⋯ ⋯ ⋯ ⋯

𝟏 0 0 0
0 𝟏 0 0
0 0 𝟏 0
0 0 0 𝟏
⋯ ⋯ ⋯ ⋯]

 
 
 
 
 
 
 
 
 

8×16
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𝑻 = 

[
 
 
 
 
 
 
 
 
 
 
 
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

𝟏 𝟏 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0
𝟏 0
⋯ ⋯

𝟏 𝟏 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
𝟏 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0
0 0
⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0
0 𝟏
⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 𝟏 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0
0 0
⋯ ⋯]

 
 
 
 
 
 
 
 
 
 
 

 

Equation (26) expresses the transition matrix T when both its rows and 

columns are referenced in the basis vector (17) of conventional order, which 

corresponds to a state vector of the form 

 

[000 001 010 011 100 101 110 111]𝑇. 

 

The matrix T can be used to construct the network state diagram shown in 

Fig. (1). Our matrix T is equivalent to the structure matrix L in [11, p. 118]. 

However, L has both its rows and columns referenced in a basis vector that is 

equivalent to the one in (17) but in reverse order.  

 

 

Fig. (1). The state diagram or map of all possible trajectories of the states  𝒙𝟏(𝒕)𝒙𝟐(𝒕)𝒙𝟑(𝒕). 

 

4. Conclusions 

Despite the extensive computational successes of the STP approach, it is still very 

slowly being accepted and assimilated by the scientific community. In particular, the 

STP concepts, techniques, and applications have not found their way yet to popular 

textbooks, though they are definitely expected and needed to do so sooner or later.  

This paper is an attempt to popularize the STP approach by offering a 

detailed lengthy example of one of its prominent and most successful applications, 

namely, that of the analysis of synchronous Boolean networks. Besides overcoming 
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the barrier against learning and utilizing STP concepts, the current exposition paves 

the way towards an efficient implementation for the STP methodology when 

handling binary matrices. Though the STP methodology is originally intended to 

handle data over the real and complex fields, the current exposition clearly indicates 

that the STP methodology can be directly tailored to efficiently handle the binary  

𝑂𝑅  and 𝑋𝑂𝑅 operations in Boolean algebras. Such operations intrinsically demand 

the use of single logic gates and should not be implemented as real addition 

demanding the use of an array of full adders. 
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 تمثل ورقة البحث هذه شرحا تعليميا مفصلا لتحليل الشبكات البولانية .ملخص البحث

المتزامنة باستخدام نوع جديد من مضروبات المصفوفات يسمى المضروب شبه المنظومي 
فيهما عدد   ف كو ب م نأ)ض ش ن(. يقوم هذا المضروب بإيجاد حاصل لضرب مصفوفتين 

الأعمدة ن للمصفوفة الأولى ليس بالضرورة مساويا لعدد الصفوف ف للمصفوفة الثانية،  
د يكون قاسما له. إن فضاء الحالات لشبكة بولانية مؤلفة من  وإنما قد يكون مضاعفا له أو ق

n   من الرؤوس يمثل هنا بمتجه يحوي عددn2  من الحالات مرتبة ترتيبا طبيعيا يتم إيجادها
من المتجهات ذوات العنصرين تمثل متغيرات الشبكة. إن  nكمضروب شبه منظومي لعدد 

تعبيرها المصفوفي عن المنطق بالترتيب أحد الإسهامات الملحوظة لورقة البحث هذه هو 
الاصطلاحي المألوف في جداول الصدق وليس بالترتيب المعكوس المستغرب الذي دأب  
الباحثون في المضروبات شبه المنظومية على استخدامه. نقوم هنا بإعادة إنتاج التحليل  

نا على تفصيلات بالمضروبات شبه المنظومية لشبكة تعد مثالا نمطيا تقليديا. يشتمل تحليل
دقيقة تجعل مسألة المعالجات بالمضروبات شبه المنظومية أيسر منالا وأقرب فهما 
لمستخدميها المحتملين. يشير تحليلنا إلى طرائق أكثر كفاية وأفضل سرعة لتنفيذ الحل  
بالمضروبات شبه المنظومية لا نغرم فيه كلفة لمؤثر "أو المشتملة" أو لمؤثر "أو المستثنية" 

 ثر مما يستحقان في واقع الأمر.أك


