
Journal of Engineering and Computer Sciences

Qassim University, Vol. 8, No. 1, pp. 43-62 (January 2015/Rabi' I 1436H)

43

A Tutorial Exposition of the Analysis of Synchronous Boolean Networks via

Semi-Tensor Products

Ali Muhammad Ali Rushdi and Fares Ahmad Muhammad Ghaleb

Department of Electrical and Computer Engineering,

Faculty of Engineering, King Abdulaziz University,

P. O. Box 80204, Jeddah, 21589, Saudi Arabia

arushdi@kau.edu.sa

(Received 13/9/2014; Accepted for publication 25/3/2015)

ABSTRACT. This paper is a detailed tutorial exposition of the analysis of synchronous Boolean
networks via a particular matrix product called the Semi-Tensor Product (STP) of matrices, which

multiplies two matrices 𝑨𝑚𝑛 and 𝑩𝑝𝑞 in which the column dimension 𝑛 of the first matrix is not

necessarily equal to the row dimension 𝑝 of the second matrix, but is possibly a multiple or divisor of it.

The state space of a Boolean network of 𝑛 nodes is denoted herein by a vector of 2𝑛 states in natural

order obtained as the STP of 𝑛 2-element vectors representing the network variables. A notable

contribution of the paper is that its matrix expression of logic follows the conventional truth-table order,

and not the reverse unfamiliar order followed so far by the STP community. We reproduce the STP
analysis of a classical example network. We include minute details that make the STP manipulations

easily accessible to and more understandable by their potential users. Our analysis points to more efficient

implementations of the STP solution in which the 𝑂𝑅 and 𝑋𝑂𝑅 binary operations do not inflict a cost

more than they really deserve.

Keywords: Synchronous Boolean networks, Semi-tensor products, Quasi-commutativity, Size reduction,

Transition matrix.

Ali Muhammad Ali Rushdi and Fares Ahmad Muhammad Ghaleb 44

1. Introduction

A synchronous Boolean network model is the simplest possible conceptual model that

mimics or captures the essential features of many biological systems. Hence, this

model became a powerful tool for describing, analyzing, and simulating these systems.

The model consists of a set of n nodes, each of which is either in state 1 (On) or state

0 (Off) at any given time; t. Each node is updated at time (t + 1) by inputs from any

fixed subset of the set of nodes according to any desired logical rule [1-7].

Recently, the dynamics of synchronous Boolean networks have been

extensively studied by a novel matrix method utilizing a new matrix product, called

the Semi-Tensor Product (STP) of matrices [8-18]. Based on the STP paradigm, a

certain matrix expression of logic is used for the numerical derivation of the transition

matrix [T] of the Boolean network, which is called the structure matrix in [11]. This

matrix is then analyzed to deduce full information about the transient and cyclic

behavior of the network.

Despite the great success of the STP methodology, and despite the availability of

many reviews on it [11, 19-22], it does not seem to be assimilated rapidly or fully

enough by the scientific community, possibly due to its intrinsic difficulty. Since the

usefulness of the STP methodology definitely outweighs its difficulty, no effort should

be spared to make it easily accessible to researchers who need to utilize it. It is in this

spirit that we have written our extensive survey [22], and that we write this current paper

to popularize this long-awaited novel methodology.

While our earlier paper [22] is a tutorial exposition of the STP methodology

with a stress on its somewhat dubious general representation of Boolean functions,

this current paper deals with the definitely successful application of the STP

methodology to synchronous Boolean networks. In fact, it is a detailed tutorial

exposition of the analysis of synchronous Boolean networks via the STP

methodology. We employ a particular semi-tensor product of matrices, which

multiplies two matrices 𝑨𝑚𝑛 and 𝑩𝑝𝑞 in which the column dimension 𝑛 of the first

matrix is a multiple or divisor of the row dimension 𝑝 of the second matrix. This

means that we do not require the STP methodology in full (we do not demand that 𝑛

be totally unrelated to 𝑝), but we utilize a simple special-case that represents a

minimal departure from the conventional wisdom. We review basic definitions and

operations of this particular STP, which particular emphasis on its use in swapping

vectors or matrices and in reducing the size of a matrix. We represent a switching

variable as a column vector of two elements, namely the complement of variable and

the variable itself. This representation is in contrast to the one common in STP

literature in which the order of these two elements is reversed. The state space of a

Boolean network of 𝑛 nodes, therefore, is a vector of 2𝑛 states in natural order

obtained as the STP of the 𝑛 2-element vectors representing the network variables.

We reproduce the STP analysis of a classical example network, making sure to

explain every minute detail and to expose every partial result. Through this detailed

example, we hope to have made the STP manipulations easily accessible to and

A Tutorial Exposition of the Analysis of Synchronous Boolean Networks… 45

more understandable by a larger group of readers. We hope also to circumvent

serious reservations against the STP application to problems involving Boolean

functions. One reservation is that an STP representation of a Boolean function keeps

records of both the function and its complement, and hence involves unnecessary

duplication [22]. While this reservation is applicable in general logic problems, it

vanishes in the case of the study of the state space of a Boolean network. In fact, the

2𝑛 states for 𝑛 variables reduce to 2 states for a single variable, and representing a

variable by a 2-element vector becomes acceptable (even a necessity) in this case.

Another reservation is that the STP solution uses the very general and costly

operation of real multiplication to implement binary operations on 1-bit operands,

such as the 𝑂𝑅 and 𝑋𝑂𝑅 operations of Boolean algebra [22]. Our analysis herein

points to more efficient implementations of the STP solution in which these binary

operations do not inflict a cost more than they really deserve.

The rest of this paper is organized as follows. Section 2 reviews and explains

the basic definitions of the tensor product [22-25], the semi-tensor product [11, 19-22],

the swap matrix [11, 19], matrix expression of logic [11, 22, 26-30], and the power

reducing matrix [11]. A novel contribution of the paper is that its matrix expression of

logic follows the conventional truth-table order, and not the reverse order followed so

far by the STP community. Section 3 presents a detailed STP solution of a small

synchronous Boolean network, which culminates in the production of the correct

transition matrix of the network. Section 4 concludes the paper.

2. Basic Definitions

2.1 The Kronecker (Tensor) product (KP):

The Kronecker (tensor) product is defined for any two matrices regardless of their

dimensions [22-25]. Let 𝑨𝑚×𝑛= {aij}, (1 ≤ i ≤ 𝑚, 1 ≤ j ≤ 𝑛) be a matrix of m rows

and n columns and 𝑩𝑝×𝑞 be a matrix of p rows and q columns. The Kronecker product

(KP) of A and B is denoted by the operator "⨂", and is defined as the matrix

(𝑨⨂𝑩) = {aij𝑩} obtained by multiplying each element of 𝑨 by the matrix 𝑩, namely

(𝑨⨂𝑩)𝑚𝑝×𝑛𝑞 = [

a11𝑩 a12𝑩 … a1𝑛𝑩
a21𝑩 a22𝑩 … a2𝑛𝑩

⋮ ⋮ ⋮ ⋮
a𝑚1𝑩 a𝑚2𝑩 … a𝑚𝑛𝑩

].

2.2 The Semi-Tensor Product (STP)

The left STP of two general matrices (usually called STP) is denoted by the

′ ⋉ ′ operator, and given by the conventional matrix product of the Kronecker

products of the respective matrices by appropriate unit matrices, namely

Ali Muhammad Ali Rushdi and Fares Ahmad Muhammad Ghaleb 46

𝑺𝑚c
n×q

c
p

= 𝑨m×n ⋉ 𝑩p×q = (𝑨m×n ⨂ 𝑰c
n
)m

c
n×c(𝑩p×q ⨂ 𝑰c

p
)c×qc

p
, (1)

where the integer c is the least common multiple (lcm) of the (totally

unrelated) integers n and p, while 𝐼𝑘 is the 𝑘 × 𝑘 unit (identity) matrix. The STP

inherits many properties of the conventional matrix product, and reduces to it when

𝑛 = 𝑝. In particular, the STP is associative, i.e.

𝑨 ⋉ (𝑩 ⋉ 𝑪) = (𝑨 ⋉ 𝑩) ⋉ 𝑪 (2)

The STP of two column vectors 𝑨m×1 and 𝑩p×1 is the column vector 𝑺𝑚𝑝×1

given by

𝑨m×1 ⋉ 𝑩p×1 = (𝑨m×1 ⨂ 𝑰p)(𝑩p×1 ⨂ 𝑰1) = (𝑨m×1 ⨂ 𝑰p) 𝑩p×1 = 𝑨m×1 ⨂ 𝑩p×1 (3)

= [a1b1 a1b2 ⋯ a1bp a2b1 a2b2 ⋯ a2bp ⋯ amb1 amb2 ⋯ ambp]
T.

Important special cases of (1) are obtained when n is a multiple of 𝑝(𝑛 =
ℓ𝑝) or a divisor of it (𝑝 = ℓ𝑛). For the case 𝑛 = ℓ𝑝, equation (1) reduces to

𝑺m×ℓq = 𝑨m×n (𝑩p×q ⨂ 𝑰ℓ), (4)

while for the case 𝑝 = ℓ𝑛, equation (1) reduces to

𝑺ℓm×q = (𝑨m×n ⨂ 𝑰ℓ) 𝑩p×q. (5)

2.3 The Swap Matrix

Conventional matrix multiplication (and consequently STP) is not

commutative in general. However, STP acquires some quasi-commutative properties

with the aid of auxiliary tools called swap matrices [11]. We restrict our attention

here to a particular square swap matrix 𝑾[m,p] of dimensions 𝑚𝑝 × 𝑚𝑝 that

enforces the quasi commutative relation

𝑩p×1 ⋉ 𝑨m×1 = 𝑾[m×p] 𝑨m×1 ⋉ 𝑩p×1, (6)

A Tutorial Exposition of the Analysis of Synchronous Boolean Networks… 47

where (𝑨m×1 ⋉ 𝑩p×1) is given by (3), while (𝑩p×1 ⋉ 𝑨m×1) is given by

𝑩p×1 ⋉ 𝑨m×1 = 𝑩p×1 ⨂ 𝑨m×1 (7)

= [𝑏1𝑎1 𝑏1𝑎2 ⋯ 𝑏1𝑎𝑚 𝑏2𝑎1 𝑏2𝑎2 ⋯ 𝑏2𝑎𝑚 ⋯ 𝑏𝑝𝑎1 𝑏𝑝𝑎2 ⋯ 𝑏𝑝𝑎𝑚]𝑇.

For the case 𝑚 = 𝑝 = 2, we have

𝑩2×1 ⋉ 𝑨2×1 = [

𝑏1𝑎1

𝑏1𝑎2

𝑏2𝑎1

𝑏2𝑎2

] = 𝑾[2,2] 𝑨2×1 ⋉ 𝑩2×1 =

[𝑎1𝑏1

[

𝟏
0
0
0

𝑎1𝑏2

0
0
𝟏
0

𝑎2𝑏1

0
𝟏
0
0

𝑎2𝑏2]

0
0
0
𝟏

]

(8)

For convenience, the vector (𝑨2×1 ⋉ 𝑩2×1) is not placed to the right of

𝑾[2,2], but instead, its transpose is placed above it. This is a well-known trick used

frequently to enhance the readability of conventional matrix multiplication [31].

For the case 𝑚 = 2, and 𝑝 = 4, we have

𝑩4×1 ⋉ 𝑨2×1

=

[

𝑏1𝑎1

𝑏1𝑎2

𝑏2𝑎1

𝑏2𝑎2

𝑏3𝑎1

𝑏3𝑎2

𝑏4𝑎1

𝑏4𝑎2]

= 𝑾[2,4] 𝑨2×1

⋉ 𝑩4×1 =

[𝑎1𝑏1 𝑎1𝑏2 𝑎1𝑏3 𝑎1𝑏4 𝑎2𝑏1 𝑎2𝑏2 𝑎2𝑏3 𝑎2𝑏4]

[

𝟏
0
0
0
0
0
0
0

0
0
𝟏
0
0
0
0
0

0
0
0
0
𝟏
0
0
0

0
0
0
0
0
0
𝟏
0

0
𝟏
0
0
0
0
0
0

0
0
0
𝟏
0
0
0
0

0
0
0
0
0
𝟏
0
0

0
0
0
0
0
0
0
𝟏]

(9)

2.4 Matrix Expression of Logic in Conventional Order

A logic variable (A switching variable or a two-valued Boolean variable) is

represented in the STP literature (see, e.g., [11, 22, 26-30]) as a 2 × 1 matrix of

components 𝑥𝑖 and 𝑥𝑖, respectively. We will reverse these two components herein,

to have

Ali Muhammad Ali Rushdi and Fares Ahmad Muhammad Ghaleb 48

𝑥𝑖 ~ 𝒙𝑖 = [
𝑥𝑖

𝑥𝑖
]. (10)

Corresponding to the definition (10), the Boolean constants 0 and 1 are given by

0 ~ 𝛅2
1 = [

1
0
], (11)

1 ~ 𝛅2
2 = [

0
1
]. (12)

Here, the notation 𝜹𝑛
𝑗
 denotes the jth column of the 𝑛 × 𝑛 identity matrix 𝑰𝑛.

Boolean operators are defined as matrices, called structure matrices. The unary NOT

operation (¬) is expressed as

𝑴¬ = 𝛅2[2 1] = [
0 1
1 0

], (13)

so that

𝑴¬ ⋉ 𝒙i = [
0 1
1 0

] ⋉ [
𝑥𝑖

𝑥𝑖
] = [

0 1
1 0

] [
𝑥𝑖

𝑥𝑖
] = [

𝑥i

𝑥i
] = 𝒙i. (14)

Before introducing binary operators, we must see first how a set X of two

variables 𝑥1 and 𝑥2 are expressed:

𝑿 = [
𝑥1

𝑥1
] ⋉ [

𝑥2

𝑥2
] = ([

𝑥1

𝑥1
] ⨂𝑰2) ([

𝑥2

𝑥2
] ⨂𝑰1) = [

𝑥1𝑰2

𝑥1𝑰2
] [

𝑥2𝑰1

𝑥2𝑰1
] = (15)

[

𝑥1 0

0 𝑥1

𝑥1 0
0 𝑥1

] [
𝑥2

𝑥2
] =

[

𝑥1𝑥2

𝑥1𝑥2

𝑥1𝑥2

𝑥1𝑥2]

 .

The vector X constitutes the basis on which binary operators are constructed.

As a result of the choice made in (10), it appears in the same order of what is used

conventionally in truth tables in classical textbooks on logic design or Boolean

algebra (see, e.g, [32]). The STP community typically produce X in an

unconventional reversed order.

A Tutorial Exposition of the Analysis of Synchronous Boolean Networks… 49

Table (1) summarizes (conventional-order) matrix representations of the six

commutative binary Boolean operators in addition to the IMPLY operator. The (+)

sign in Table (1) denotes the standard operation of real addition, but can be safely

understood herein to express the XOR or even the OR Boolean operation. The STP

representation of a n-variable switching function 𝑓 takes the form of a 2 × 1 matrix

of the form

𝑴𝑓 ⋉ 𝑿 = 𝑴𝑓 ⋉ 𝒙1 ⋉ 𝒙2 ⋉ ⋯ ⋉ 𝒙𝑛 = 𝑴𝑓𝑿 = 𝑴𝑓(𝒙1 ⋉ 𝒙2 ⋉ ⋯ ⋉ 𝒙𝑛), (16)

where 𝑴𝒇 is a 2 × 2𝑛binary matrix whose rows are the truth tables of 𝑓and

𝑓, respectively, and 𝑿 is a 2n × 1 vector of the minterms over the variables

𝑥1, 𝑥2, ⋯ , 𝑥𝑛 . For example, for n = 3, the vector 𝑿 is given by

𝑿 = 𝒙1 ⋉ 𝒙2 ⋉ 𝒙3 =

[𝑥1𝑥2𝑥3 𝑥1𝑥2𝑥3 𝑥1𝑥2𝑥3 𝑥1𝑥2𝑥3 𝑥1𝑥2𝑥3 𝑥1𝑥2𝑥3 𝑥1𝑥2𝑥3 𝑥1𝑥2𝑥3]
𝑇 .(17)

2.5 The power reducing matrix

The power reducing matrix 𝑴𝑟 [11, p. 56-57] is a tool to invoke the

idempotency of the AND operator (𝑥 ∧ 𝑥 = 𝑥), via

𝒙 ⋉ 𝒙 = 𝑀𝑟 𝒙, (18)

𝑴𝑟 = 𝜹4 [1 4] = [

𝟏 0
0 0
0 0
0 𝟏

], (19)

where both sides of (18) are equal to [𝑥 0 0 𝑥]𝑇.

(17)

Ali Muhammad Ali Rushdi and Fares Ahmad Muhammad Ghaleb 50

3. A detailed Example

We give herein a detailed explanation of example 5.7 in p.118 of [11]. This example

deals with a 3-node synchronous Boolean network that has been analyzed also

in [2, 5], and is governed by the equations:

𝑥1(𝑡 + 1) = 𝑥2(𝑡) ∧ 𝑥3(𝑡), (20a)

𝑥2(𝑡 + 1) = 1⨁ 𝑥1(𝑡), (20b)

𝑥3(𝑡 + 1) = 𝑥2(𝑡). (20c)

In matrix form, these equations take the form

𝒙1(𝑡 + 1) = 𝑴⋏ ⋉ 𝒙2(𝑡) ⋉ 𝒙3(𝑡), (21a)

𝒙2(𝑡 + 1) = 𝑴⨁ ⋉ 𝜹2
2 ⋉ 𝒙1(𝑡) = 𝑴¬ ⋉ 𝒙1(𝑡), (21b)

𝒙3(𝑡 + 1) = 𝒙2(𝑡), (21c)

where 𝑴⋏, 𝑴⨁, 𝑴¬ are the structure matrices of the AND, XOR and NOT

operators, respectively.

We want to use (21) to deduce an equation of the form

𝑿(𝑡 + 1) = 𝑻 𝑿(𝑡), (22)

where

𝑿(𝑡 + 1) = 𝒙1(𝑡 + 1) ⋉ 𝒙2(𝑡 + 1) ⋉ 𝒙3(𝑡 + 1), (23)

𝑿(𝑡) = 𝒙1(𝑡) ⋉ 𝒙2(𝑡) ⋉ 𝒙3(𝑡). (24)

A Tutorial Exposition of the Analysis of Synchronous Boolean Networks… 51

Are the exact state vectors [3, 6] taking the form (17). The matrix T is the

transition matrix of the Boolean network [3, 6]. This matrix is named L and called

the structure matrix by the STP community [11]. It can be used to construct the full

state transition diagram of the network, and to make subtle predications of both the

transient behavior and cyclic behavior of the network.

We now reproduce a derivation of 𝑿(𝑡 + 1) in terms of 𝑿(𝑡) from [11, p. 118],

but with the several not-so-obvious gaps therein being filled with clarifying details.

𝑿(𝑡 + 1) = 𝒙1(𝑡 + 1) ⋉ 𝒙2(𝑡 + 1) ⋉ 𝒙3(𝑡 + 1)

= (𝑴⋏ ⋉ 𝒙2(𝑡) ⋉ 𝒙3(𝑡)) ⋉ (𝑴¬ ⋉ 𝒙1(𝑡)) ⋉ 𝒙2(𝑡)

= 𝑴⋏ ⋉ ((𝒙2(𝑡) ⋉ 𝒙3(𝑡)) ⋉ 𝑴¬) ⋉ 𝒙1(𝑡) ⋉ 𝒙2(𝑡)

= 𝑴⋏ ⋉ ((𝑰4 ⨂𝑴¬) ⋉ (𝒙2(𝑡) ⋉ 𝒙3(𝑡)) ⋉ 𝒙1(𝑡) ⋉ 𝒙2(𝑡).

Now

(𝒙2(𝑡) ⋉ 𝒙3(𝑡)) ⋉ 𝒙1(𝑡) ⋉ 𝒙2(𝑡)

= 𝑾[2,4] ⋉ 𝒙1(𝑡) ⋉ (𝒙2(𝑡) ⋉ 𝒙3(𝑡)) ⋉ 𝒙2(𝑡)

= 𝑾[2,4] ⋉ 𝒙1(𝑡) ⋉ 𝒙2(𝑡) ⋉ (𝒙3(𝑡) ⋉ 𝒙2(𝑡))

= 𝑾[2,4] ⋉ 𝒙1(𝑡) ⋉ 𝒙2(𝑡) ⋉ 𝑾[2,2] ⋉ 𝒙2(𝑡) ⋉ 𝒙3(𝑡)

= 𝑾[2,4] ⋉ (𝑰4 ⨂ 𝑾[2,2]) ⋉ (𝒙1(𝑡) ⋉ 𝒙2(𝑡)) ⋉ (𝒙2(𝑡) ⋉ 𝒙3(𝑡))

= 𝑾[2,4] ⋉ (𝑰4⨂𝑾[2,2]) ⋉ 𝒙1 ⋉ (𝒙2(𝑡) ⋉ 𝒙2(𝑡)) ⋉ 𝒙3(𝑡)

= 𝑾[2,4] ⋉ (𝑰4 ⨂ 𝑾[2,2]) ⋉ 𝒙1(𝑡) ⋉ (𝑴𝑟 ⋉ 𝒙2(𝑡)) ⋉ 𝒙3(𝑡)

= 𝑾[2,4] ⋉ (𝑰4 ⨂𝑾[2,2]) ⋉ (𝑰2⨂𝑴𝑟) ⋉ 𝒙1(𝑡) ⋉ 𝒙2(𝑡) ⋉ 𝒙3(𝑡)

= 𝑾[2,4] ⋉ (𝑰4⨂𝑾[2,2]) ⋉ (𝑰2⨂𝑴𝑟) ⋉ 𝑿(𝑡)

𝑿(𝑡 + 1) = 𝑴⋏ ⋉ (𝑰4⨂𝑴¬) ⋉ 𝑾[2,4] ⋉ (𝑰4⨂𝑾[2,2]) ⋉ (𝑰2⨂𝑴𝑟) ⋉ 𝑿(𝑡) (22a)

= 𝑻 ⋉ 𝑿(𝑡) = 𝑻 𝑿(𝑡).

The transition matrix of the network is given by

𝑻 = 𝑴⋏2×4
 ⋉ (𝑰4 ⨂𝑴¬)8×8 ⋉ 𝑾[2,4]8×8

 ⋉ (𝑰4⨂[𝑾[2,2]])16×16
 ⋉ (𝑰2⨂𝑴𝑟)8×4,(25)

where

Ali Muhammad Ali Rushdi and Fares Ahmad Muhammad Ghaleb 52

Table (1). Structure matrices of seven binary Boolean operators for conventional truth-table order.

𝑥1O 𝑥2

Expanded structure matrix for

the basis:

[𝑥1𝑥2 𝑥1𝑥2 𝑥1𝑥2 𝑥1𝑥2]
𝑇

Abbreviated

structure

matrix

Symbol

(O)

Operator

[
𝑥1𝑥2 + 𝑥̅1𝑥2 + 𝑥1𝑥̅2

𝑥1𝑥2
] [

𝟏 𝟏 𝟏 𝟎
𝟎 𝟎 𝟎 𝟏

] 𝜹𝟐[𝟏, 𝟏, 𝟏, 𝟐] ∧ AND

[
𝑥̅1𝑥̅2

𝑥1𝑥2 + 𝑥1𝑥̅2 + 𝑥1𝑥2
] [

𝟏 𝟎 𝟎 𝟎
𝟎 𝟏 𝟏 𝟏

] 𝜹𝟐[𝟏, 𝟐, 𝟐, 𝟐] ∨ OR

[
𝑥1𝑥2

𝑥1𝑥2 + 𝑥̅1𝑥2 + 𝑥1𝑥̅2
] [

𝟎 𝟎 𝟎 𝟏
𝟏 𝟏 𝟏 𝟎

] 𝜹𝟐[𝟐, 𝟐, 𝟐, 𝟏] ↑ NAND

[
𝑥1𝑥2 + 𝑥1𝑥̅2 + 𝑥1𝑥2

𝑥̅1𝑥̅2
] [

𝟎 𝟏 𝟏 𝟏
𝟏 𝟎 𝟎 𝟎

] 𝜹𝟐[𝟐, 𝟏, 𝟏, 𝟏] ↓ NOR

[
𝑥1𝑥2 + 𝑥1𝑥2

𝑥1𝑥2 + 𝑥1𝑥2
] [

𝟏 𝟎 𝟎 𝟏
𝟎 𝟏 𝟏 𝟎

] 𝜹𝟐[𝟏, 𝟐, 𝟐, 𝟏] ⊕ XOR

[
𝑥1𝑥2 + 𝑥1𝑥2

𝑥1𝑥2 + 𝑥1𝑥2
]

[
𝟎 𝟏 𝟏 𝟎
𝟏 𝟎 𝟎 𝟏

]

𝜹𝟐 [𝟐, 𝟏, 𝟏, 𝟐]

⨀ XNOR

≡ Equivalence

↔ Bi-

implication

[
𝑥1𝑥2

𝑥1𝑥2 + 𝑥1𝑥2 + 𝑥1𝑥2
] [

𝟎 𝟎 𝟏 𝟎
𝟏 𝟏 𝟎 𝟏

] 𝜹𝟐[𝟐, 𝟐, 𝟏, 𝟐] → Implication

𝑪8×4 = (𝑰2⨂𝑴r) = ([
𝟏 0
0 𝟏

] ⨂ [

𝟏 0
0 0
0 0
0 𝟏

]) =

[

𝟏 0 ⋮ 0 0
0 0 ⋮ 0 0
0 0 ⋮ 0 0
0 𝟏 ⋮ 0 0
⋯ ⋯ ⋮ ⋯ ⋯
0 0 ⋮ 𝟏 0
0 0 ⋮ 0 0
0 0 ⋮ 0 0
0 0 ⋮ 0 𝟏]

8×4

A Tutorial Exposition of the Analysis of Synchronous Boolean Networks… 53

𝑫16×16 = (𝑰4⨂[𝑾[2,2]]) = ([

𝟏 0 0 0
0 𝟏 0 0
0 0 𝟏 0
0 0 0 𝟏

] ⨂ [

𝟏 0 0 0
0 0 𝟏 0
0 𝟏 0 0
0 0 0 𝟏

])

=

[

𝟏 0 0 0 ⋮
0 0 𝟏 0 ⋮
0 𝟏 0 0 ⋮
0 0 0 𝟏 ⋮
⋯ ⋯ ⋯ ⋯ ⋯

0 0 0 0 ⋮
0 0 0 0 ⋮
0 0 0 0 ⋮
0 0 0 0 ⋮
⋯ ⋯ ⋯ ⋯ ⋯

0 0 0 0 ⋮
0 0 0 0 ⋮
0 0 0 0 ⋮
0 0 0 0 ⋮
⋯ ⋯ ⋯ ⋯ ⋯

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
⋯ ⋯ ⋯ ⋯

0 0 0 0 ⋮
0 0 0 0 ⋮
0 0 0 0 ⋮
0 0 0 0 ⋮
⋯ ⋯ ⋯ ⋯ ⋯

𝟏 0 0 0 ⋮
0 0 𝟏 0 ⋮
0 𝟏 0 0 ⋮
0 0 0 𝟏 ⋮
⋯ ⋯ ⋯ ⋯ ⋯

0 0 0 0 ⋮
0 0 0 0 ⋮
0 0 0 0 ⋮
0 0 0 0 ⋮
⋯ ⋯ ⋯ ⋯ ⋯

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
⋯ ⋯ ⋯ ⋯

0 0 0 0 ⋮
0 0 0 0 ⋮
0 0 0 0 ⋮
0 0 0 0 ⋮
⋯ ⋯ ⋯ ⋯ ⋯

0 0 0 0 ⋮
0 0 0 0 ⋮
0 0 0 0 ⋮
0 0 0 0 ⋮
⋯ ⋯ ⋯ ⋯ ⋯

𝟏 0 0 0 ⋮
0 0 𝟏 0 ⋮
0 𝟏 0 0 ⋮
0 0 0 𝟏 ⋮
⋯ ⋯ ⋯ ⋯ ⋯

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
⋯ ⋯ ⋯ ⋯

0 0 0 0 ⋮
0 0 0 0 ⋮
0 0 0 0 ⋮
0 0 0 0 ⋮
⋯ ⋯ ⋯ ⋯ ⋯

0 0 0 0 ⋮
0 0 0 0 ⋮
0 0 0 0 ⋮
0 0 0 0 ⋮
⋯ ⋯ ⋯ ⋯ ⋯

0 0 0 0 ⋮
0 0 0 0 ⋮
0 0 0 0 ⋮
0 0 0 0 ⋮
⋯ ⋯ ⋯ ⋯ ⋯

𝟏 0 0 0
0 0 𝟏 0
0 1 0 0
0 0 0 𝟏
⋯ ⋯ ⋯ ⋯]

16×16

Ali Muhammad Ali Rushdi and Fares Ahmad Muhammad Ghaleb 54

𝑬16×8 = 𝑫16×16 ⋉ 𝑪8×4 = 𝑫16×16(𝑪⨂𝑰2) = 𝑫16×16

[

𝟏 0 ⋮
0 𝟏 ⋮
⋯ ⋯ ⋯
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0
0 0
⋯ ⋯
0 0
0 0
⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮
𝟏 0 ⋮
0 𝟏 ⋮
⋯ ⋯ ⋮

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0
0 0
⋯ ⋯
0 0
0 0
⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

𝟏 0 ⋮
0 𝟏 ⋮
⋯ ⋯ ⋮
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0
0 0
⋯ ⋯
0 0
0 0
⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0
0 0
⋯ ⋯
𝟏 0
0 𝟏
⋯ ⋯]

=

[

𝟏 0 ⋮
0 0 ⋮
0 𝟏 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0 ⋮
0 0 ⋮
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0 ⋮
0 0 ⋮
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0
0 0
0 0
0 0
⋯ ⋯

0 0 ⋮
0 0 ⋮
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0 ⋮
𝟏 0 ⋮
0 0 ⋮
0 𝟏 ⋮
⋯ ⋯ ⋮

0 0 ⋮
0 0 ⋮
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0
0 0
0 0
0 0
⋯ ⋯

0 0 ⋮
0 0 ⋮
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0 ⋮
0 0 ⋮
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

𝟏 0 ⋮
0 0 ⋮
0 𝟏 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0
0 0
0 0
0 0
⋯ ⋯

0 0 ⋮
0 0 ⋮
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0
𝟏 0
0 0
0 𝟏
⋯ ⋯]

16×8

𝑭16×8 = 𝑾[2,4]8×8
⋉ 𝑬16×8 = (𝑾[2,4]⨂𝑰2)16×16

𝑬16×8 (26)

 𝑤ℎ𝑒𝑟𝑒 (𝑾[2,4]⨂𝑰2) is given by

A Tutorial Exposition of the Analysis of Synchronous Boolean Networks… 55

[

⋯ ⋯ ⋯
𝟏 0 ⋮
0 𝟏 ⋮
⋯ ⋯ ⋯

⋯ ⋯ ⋯
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

⋯ ⋯ ⋯
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

⋯ ⋯ ⋯
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

⋯ ⋯ ⋯
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

⋯ ⋯ ⋯
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

⋯ ⋯ ⋯
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

⋯ ⋯
0 0
0 0
⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

𝟏 0 ⋮
0 𝟏 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0
0 0
⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

𝟏 0 ⋮
0 𝟏 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0
0 0
⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

𝟏 0 ⋮
0 𝟏 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0
0 0
⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

𝟏 0 ⋮
0 𝟏 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0
0 0
⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

𝟏 0 ⋮
0 𝟏 ⋮
⋯ ⋯ ⋯

0 0
0 0
⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

𝟏 0 ⋮
0 𝟏 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0
0 0
⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

𝟏 0
0 𝟏
⋯ ⋯]

𝑭16×8 =

[

𝟏 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0
0 0
⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

𝟏 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0
0 0
⋯ ⋯

0 𝟏 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0
0 0
⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 𝟏 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0
0 0
⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0 ⋮
𝟏 0 ⋮
⋯ ⋯ ⋮

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0
0 0
⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0
𝟏 0
⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0 ⋮
0 𝟏 ⋮
⋯ ⋯ ⋮

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋮

0 0
0 0
⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0
0 𝟏
⋯ ⋯]

16×8

Ali Muhammad Ali Rushdi and Fares Ahmad Muhammad Ghaleb 56

(𝑰4⨂𝑴¬) =

[

0 𝟏 ⋮
𝟏 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0
0 0
⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 𝟏 ⋮
𝟏 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0
0 0
⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 𝟏 ⋮
𝟏 0 ⋮
⋯ ⋯ ⋯

0 0
0 0
⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 𝟏
𝟏 0
⋯ ⋯]

8×8

𝑮16×8 = (𝑰4⨂𝑴¬)8×8 ⋉ 𝑭16×8 = ((𝑰4⨂𝑴¬)⨂𝑰2)16×16
𝑭16×8 (27)

𝑤ℎ𝑒𝑟𝑒 (𝑰4⨂𝑴¬)⨂𝑰2 is given by

[

⋯ ⋯ ⋯
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

𝟏 0 ⋮
0 𝟏 ⋮
⋯ ⋯ ⋯

⋯ ⋯ ⋯
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

⋯ ⋯ ⋯
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

⋯ ⋯ ⋯
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

⋯ ⋯ ⋯
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

⋯ ⋯ ⋯
0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

⋯ ⋯
0 0
0 0
⋯ ⋯

𝟏 0 ⋮
0 𝟏 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0
0 0
⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

00 00 ⋮
00 00 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

𝟏 0 ⋮
0 𝟏 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0
0 0
⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

𝟏 0 ⋮
0 𝟏 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0
0 0
⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

𝟏 0 ⋮
0 𝟏 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0
0 0
⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

𝟏 0 ⋮
0 𝟏 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0
0 0
⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

𝟏 0
0 𝟏
⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

𝟏 0 ⋮
0 𝟏 ⋮
⋯ ⋯ ⋯

0 0
0 0
⋯ ⋯]

16×16

A Tutorial Exposition of the Analysis of Synchronous Boolean Networks… 57

𝑮16×8 =

[

⋯ ⋯
0 ⋮
0 ⋮
⋯ ⋯

⋯ ⋯
0 ⋮
0 ⋮
⋯ ⋯

⋯ ⋯
0 ⋮
0 ⋮
⋯ ⋯

⋯ ⋯
0 ⋮
0 ⋮
⋯ ⋯

⋯ ⋯
𝟏 ⋮
0 ⋮
⋯ ⋯

⋯ ⋯
0 ⋮
0 ⋮
⋯ ⋯

⋯ ⋯
0 ⋮
0 ⋮
⋯ ⋯

⋯
0
0
⋯

𝟏 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0
0
⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

𝟏 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0
0
⋯

0 ⋮
0 ⋮
⋯ ⋯

𝟏 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0
0
⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
𝟏 ⋮
⋯ ⋯

0
0
⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
𝟏 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0
0
⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0
𝟏
⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
𝟏 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0 ⋮
0 ⋮
⋯ ⋯

0
0
⋯]

16×8

𝑻8×8 = (𝑴⋏)2×4 ⋉ 𝐺16×8 = ((𝑴⋏)2×4⨂𝑰4)8×16𝑮16×8

𝑤ℎ𝑒𝑟𝑒 (𝑴⋏)2×4⨂𝑰4 is given by

[

𝟏 0 0 0 ⋮
0 𝟏 0 0 ⋮
0 0 𝟏 0 ⋮
0 0 0 𝟏 ⋮
⋯ ⋯ ⋯ ⋯ ⋯

𝟏 0 0 0 ⋮
0 𝟏 0 0 ⋮
0 0 𝟏 0 ⋮
0 0 0 𝟏 ⋮
⋯ ⋯ ⋯ ⋯ ⋯

𝟏 0 0 0 ⋮
0 𝟏 0 0 ⋮
0 0 𝟏 0 ⋮
0 0 0 𝟏 ⋮
⋯ ⋯ ⋯ ⋯ ⋯

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
⋯ ⋯ ⋯ ⋯

0 0 0 0 ⋮
0 0 0 0 ⋮
0 0 0 0 ⋮
0 0 0 0 ⋮
⋯ ⋯ ⋯ ⋯ ⋯

0 0 0 0 ⋮
0 0 0 0 ⋮
0 0 0 0 ⋮
0 0 0 0 ⋮
⋯ ⋯ ⋯ ⋯ ⋯

0 0 0 0 ⋮
0 0 0 0 ⋮
0 0 0 0 ⋮
0 0 0 0 ⋮
⋯ ⋯ ⋯ ⋯ ⋯

𝟏 0 0 0
0 𝟏 0 0
0 0 𝟏 0
0 0 0 𝟏
⋯ ⋯ ⋯ ⋯]

8×16

Ali Muhammad Ali Rushdi and Fares Ahmad Muhammad Ghaleb 58

𝑻 =

[

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

𝟏 𝟏 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0
𝟏 0
⋯ ⋯

𝟏 𝟏 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
𝟏 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0
0 0
⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0
0 𝟏
⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 𝟏 ⋮
⋯ ⋯ ⋯

0 0 ⋮
0 0 ⋮
⋯ ⋯ ⋯

0 0
0 0
⋯ ⋯]

Equation (26) expresses the transition matrix T when both its rows and

columns are referenced in the basis vector (17) of conventional order, which

corresponds to a state vector of the form

[000 001 010 011 100 101 110 111]𝑇.

The matrix T can be used to construct the network state diagram shown in

Fig. (1). Our matrix T is equivalent to the structure matrix L in [11, p. 118].

However, L has both its rows and columns referenced in a basis vector that is

equivalent to the one in (17) but in reverse order.

Fig. (1). The state diagram or map of all possible trajectories of the states 𝒙𝟏(𝒕)𝒙𝟐(𝒕)𝒙𝟑(𝒕).

4. Conclusions

Despite the extensive computational successes of the STP approach, it is still very

slowly being accepted and assimilated by the scientific community. In particular, the

STP concepts, techniques, and applications have not found their way yet to popular

textbooks, though they are definitely expected and needed to do so sooner or later.

This paper is an attempt to popularize the STP approach by offering a

detailed lengthy example of one of its prominent and most successful applications,

namely, that of the analysis of synchronous Boolean networks. Besides overcoming

A Tutorial Exposition of the Analysis of Synchronous Boolean Networks… 59

the barrier against learning and utilizing STP concepts, the current exposition paves

the way towards an efficient implementation for the STP methodology when

handling binary matrices. Though the STP methodology is originally intended to

handle data over the real and complex fields, the current exposition clearly indicates

that the STP methodology can be directly tailored to efficiently handle the binary

𝑂𝑅 and 𝑋𝑂𝑅 operations in Boolean algebras. Such operations intrinsically demand

the use of single logic gates and should not be implemented as real addition

demanding the use of an array of full adders.

5. References

[1] Heidel, J., Maloney, J., Farrow, J. and Rogers, J., "Finding cycles in

synchronous Boolean networks with applications to biochemical systems,"

International Journal Bifurcation and Chaos, Vol. 13, No. 3, 2003,

pp. 535-552.

[2] Farrow, C., Heidel, J., Maloney, H., and Rogers, J., "Scalar equations for

synchronous Boolean networks with biological applications," IEEE

Transactions on Neural Networks, Vol. 15, No. 2, 2004, pp. 348–354.

[3] Rushdi, A. M., and Al-Otaibi, S. O., "On the linear analysis of synchronous

switching networks," Journal of King Abdulaziz University: Engineering

Sciences, Vol. 18, No. 2, 2007, pp. 43-72.

[4] Rushdi, A. M., and Al-Otaibi, S. O., "On limitations of using scalar equations

for analyzing synchronous Boolean networks," Journal of King Abdulaziz

University: Engineering Sciences, Vol. 19, No. 2, 2008, pp. 41-49.

[5] Rushdi, A. M., and Alsogati, A. A., "On reduced scalar equations for

synchronous Boolean networks," Journal of Mathematics and Statistics,

Vol. 9, No. 3, 2013, pp. 262-276.

[6] Rushdi, A. M., and Alsogati, A. A., "Matrix analysis of synchronous Boolean

networks," International Magazine on Advances in Computer Science and

Telecommunications (IMACST), Vol. 6, 2015.

[7] Zheng, D., Yang, G., Li, X., and Wang, Z., "An algorithm to find cycles of

biochemical systems," International Conference on Information, Business

and Education Technology (ICIBET), Atlantis Press, 2013, pp. 14–18.

[8] Cheng, D., "Input-state approach to Boolean networks," IEEE Transactions on

Neural Networks, Vol. 20, No. 3, 2009, pp. 512–521.

[9] Cheng, D., and Qi, H., "State–space analysis of Boolean networks," IEEE

Transactions on Neural Networks, Vol. 21, No. 4, 2010, pp. 584-594.

[10] Cheng, D., and Qi, H., "A linear representation of dynamics of Boolean

networks," IEEE Transactions on Automatic Control, Vol. 55, No. 10,

2010, pp. 2251–2258.

Ali Muhammad Ali Rushdi and Fares Ahmad Muhammad Ghaleb 60

[11] Cheng, D., Qi, H., and Z. Q. Li, Analysis and Control of Boolean Networks:

A Semi-Tensor Product Approach, Springer-Verlag, London, 2011.

[12] Cheng, D., Qi, H., and Zhao, Y., "On Boolean control networks-An algebraic

approach," Proceedings of the 18th IFAC “International Federation of

Automatic Control” World Congress Milano (Italy), 2011, pp. 8366-8377.

[13] Laschov, D., and Margaliot, M., "A maximum principle for single-input

Boolean control networks," IEEE Transactions on Automatic Control,

Vol. 56, No. 4, 2011, pp. 913-917.

[14] Cheng, D., Qi, H., and Zhiqiang, L., "Model construction of Boolean

networks via observed data," IEEE Transactions on Neural Networks,

Vol. 22, No. 4, 2011, pp. 525-536.

[15] Li, Z., Song, J., and Xiao, H., On the cycles of Boolean networks. IEEE 24th

Chinese Control and Decision Conference (CCDC), 2012, pp. 770-774.

[16] Li, R., and Chu, T., "Complete synchronization of Boolean networks," IEEE

Transactions on Neural Networks Learning Systems," Vol. 23, No. 5, 2012,

pp. 840-846.

[17] Zhan, J., Lu, S., and Yang, G., "Analysis of Boolean networks using an

optimized algorithm of structure matrix based on semi-tensor product,"

Journal of Computers, Vol. 8, No. 6, 2013, pp. 1441-1448.

[18] Li, R., Yang, M., and Chu, T., "Synchronization design of Boolean networks

via the semi-tensor product method," IEEE Transactions on Neural

Networks Learning Systems, Vol. 24, No. 6, 2013, pp. 996-1001.

[19] Cheng, D., Qi, H., and Xue, A., "A survey of semi-tensor product of matrices,"

Journal of System Science and Complexity, Vol. 20, 2007, pp. 304-322.

[20] Cheng, D., and Zhang L., "On semi-tensor product of matrices and its

applications," Acta Mathematicae Applicatae Sinica (English Series),

Vol. 19, No. 2, 2003, pp. 219-228.

[21] Cheng, D., "Semi-tensor product of matrices and its applications: A survey,"

Proceeding of the 6th ICCM’ 07, Zhejiang, China, Vol. 3, 2007, pp. 641-668.

[22] Rushdi, A. M., and Ghaleb, F. A., "A tutorial exposition of semi-tensor

products of matrices with a stress on their representation of Boolean

functions," Journal of King Abdulaziz University: FCIT, Vol. 2, No. 1,

2013, pp. 1-39.

[23] Brewer, J., "Kronecker products and matrix calculus in system theory," IEEE

Transactions on Circuits and Systems, Vol. CAS-25, No. 9, 1978, pp. 772-781,

corrections: ibid, Vol. CAS-26, No. 5, 1979, p. 360.

[24] Graham, A., Kronecker Products and Matrix Calculus: with Applications, Ellis

Horwood Limited and John Wiley & Sons, New York, NY, USA, 1981.

A Tutorial Exposition of the Analysis of Synchronous Boolean Networks… 61

[25] Rushdi, A. M., and F. A. M. Ghaleb, "On self-inverse binary matrices over

the binary Galois field," Journal of Mathematics and Statistics, Vol. 9, No.

3, 2013, pp. 238-248.

[26] Zhoa, Y., Gao, X., and Cheng, D., "Semi-tensor product approach to Boolean

functions," pp. 1-9, Unpublished Preprint, Available at

http://lsc.amss.ac.cn/~dcheng/preprint/bf01.pdf

[27] Cheng, D., and Qi, H., "Matrix expression of logic and fuzzy

control," Proceedings of the 44th IEEE Conference on Decision and

Control and the European Control Conference, (CDC-ECC), 2005,

pp. 3273-3278.

[28] Cheng, D., and Li, Z., "Solving logic equation via matrix expression,"

Frontiers of Electrical and Electronic Engineering in China, Vol. 4, No. 3,

2009, pp. 259-269.

[29] Cheng, D., Yin, Z., and Xiangru, X., "Matrix approach to Boolean calculus,"

Proceedings of the 50th IEEE Conference on Decision and Control and the

European Control Conference (CDC-ECC), 2011, pp. 6950-6955.

[30] Cheng, D., and Qi, H., "Logic and logic-based control," Journal of Control

Theory and Applications, Vol. 6, No. 1, 2012, pp. 26-36.

[31] Rushdi, A. M., "Development of modified nodal analysis into a pedagogical

tool," IEEE Transactions on Education, Vol. E-28, No. 1, 1985, pp. 17-25.

[32] Muroga, S., Logic Design and Switching Theory, Wiley, New York, NY,

USA, 1979.

Ali Muhammad Ali Rushdi and Fares Ahmad Muhammad Ghaleb 62

 شرح تعليمي لتحليل الشبكات البولانية المتزامنة باستخدام المضروبات شبه المنظومية

 علي محمد علي رشدي و فارس أحمد محمد غالب
 قسم الهندسة الكهربائية وهندسة الحاسبات، كلية الهندسة،

 ، المملكة العربية السعودية 21589الملك عبد العزيز، جدة، ، جامعة80204ص. ب.

arushdi@kau.edu.sa

 (25/3/2015، قبل للنشر في 13/9/2014)قدم للنشر في

 تمثل ورقة البحث هذه شرحا تعليميا مفصلا لتحليل الشبكات البولانية .ملخص البحث

المتزامنة باستخدام نوع جديد من مضروبات المصفوفات يسمى المضروب شبه المنظومي
فيهما عدد ف كو ب م نأ)ض ش ن(. يقوم هذا المضروب بإيجاد حاصل لضرب مصفوفتين

الأعمدة ن للمصفوفة الأولى ليس بالضرورة مساويا لعدد الصفوف ف للمصفوفة الثانية،
د يكون قاسما له. إن فضاء الحالات لشبكة بولانية مؤلفة من وإنما قد يكون مضاعفا له أو ق

n من الرؤوس يمثل هنا بمتجه يحوي عددn2 من الحالات مرتبة ترتيبا طبيعيا يتم إيجادها
من المتجهات ذوات العنصرين تمثل متغيرات الشبكة. إن nكمضروب شبه منظومي لعدد

تعبيرها المصفوفي عن المنطق بالترتيب أحد الإسهامات الملحوظة لورقة البحث هذه هو
الاصطلاحي المألوف في جداول الصدق وليس بالترتيب المعكوس المستغرب الذي دأب
الباحثون في المضروبات شبه المنظومية على استخدامه. نقوم هنا بإعادة إنتاج التحليل

نا على تفصيلات بالمضروبات شبه المنظومية لشبكة تعد مثالا نمطيا تقليديا. يشتمل تحليل
دقيقة تجعل مسألة المعالجات بالمضروبات شبه المنظومية أيسر منالا وأقرب فهما
لمستخدميها المحتملين. يشير تحليلنا إلى طرائق أكثر كفاية وأفضل سرعة لتنفيذ الحل
بالمضروبات شبه المنظومية لا نغرم فيه كلفة لمؤثر "أو المشتملة" أو لمؤثر "أو المستثنية"

 ثر مما يستحقان في واقع الأمر.أك

