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ABSTRACT. Expanded polystyrene (EPS) geofoam is a lightweight material that has been used in 
engineering applications long time ago. Its density is about a hundredth of that of normal weight soil. Its 

thermal insulation properties are excellent with stiffness and compression strength comparable to medium 

clay. It has been utilized in several engineering applications such as in reducing settlement below 
embankments, sound and vibration damping, reducing lateral pressure on substructures, reducing stresses 

on rigid buried conduits and several others.  

A new application for EPS in civil engineering is provided in the study as an example for the 
potential use of EPS in the civil engineering profession. Reducing the dynamic loads on earth retaining 

structures utilizing EPS-Geofoam is analyzed. 

The results of this study point towards the main conclusion that EPS geofoam is the future 
material of promise in various civil engineering applications. SABIC polystyrene has comparable 

densities and stiffness such that it can be used in all such applications.  
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1. Introduction 

Expanded Polystyrene, EPS, geofoam is a plastic/polymeric material. Plastic 

materials are commonly derived from coal or oil refining. Plastics can be molded by 

the influence of heat and pressure. Commonly used EPS geofoam has a density of 

15- 30 kg/m3 with stiffness and strength comparable to medium clay. It is self-

supporting when stacked and has good heat insulation properties.  

Introduced in the 1950s (BASF Corp., 1997) Expanded Polystyrene, EPS, 

geofoam has played an innovative role in solving a number of engineering problems 

as a lightweight construction material. In the geotechnical-engineering field, EPS 

geofoam is used as backfill to reduce lateral pressure behind retaining structures. 

EPS geofoam reduces settlement experienced by utility lines when used in 

constructing embankments. Bridge approaches fills experience less settlement when 

built of EPS geofoam with reduced differential settlement between bridge deck and 

approach fill (bridge bump). Stabilization of slopes with geofoam can maintain 

original slope angle, and reduces environmental damage on the site while increasing 

the factor of safety of the slope at the same time.  

Use of EPS geofoam compressible inclusion can reduce the pressures 

induced by seismic loading. The technique of compressible inclusion can also be 

used for soil interaction problems. Heave problems are common and economically 

important in those parts of the world with arid regions, e.g. Egypt and Southwestern 

United States (Lambe & Whitman, 1969) as well as the kingdom of Saudi Arabia 

(Saudi Building Code SBC 303, 2006). Creating arch action above buried utility line 

by using compressible inclusion reduces stresses on the utility lines hence permitting 

the use of rigid concrete pipes beneath high fills.  

The study presents an over view about this important material and its 

potential applications in the civil engineering profession. Discussion about the 

engineering properties of the material as well as its behavior under loading is 

presented. Finally the results and discussion of civil engineering problems where 

EPS geofoam shows to be good alternative solutions compared to the typical one are 

presented. This include; reducing lateral pressure behind retaining structures by 

using geofoam, slope stabilization by using geofoam, and reducing the vertical 

pressure on utility lines by using geofoam 

 

2. Literature Review 

Expanded Polystyrene, EPS, geofoam is a super-lightweight, closed cell, rigid, 

plastic foam, which is invented in 1950 (BASF, 1997). The EPS geofoam light unit 

weight puts it in a separate category compared to other types of engineering 

lightweight materials as shown in Table (1).  The literature review covers two titles; 

review of the EPS geofoam physical/engineering properties and review of the 

engineering applications utilizing the EPS geofoam. 
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Table (1). Types of Lightweight Materials (Miki, H., 1996) 

Lightweight Material 
Unit Volume 

Weight (tf/m3)* 
Description 

EPS Blocks 0.01 ~ 0.03 Ultra lightweight, expandable synthetic resins 

Expanded Beads Mixed 

Lightweight Soil 
0.7 approx. or more 

Variable density; similar compaction and 
deformation characteristics to soil; can use 

excess construction soil 

Air Foamed Mortar and Air 

Foamed Lightweight 

Stabilized Soil 

0.5 approx. or more 
Density adjustable; flow able; self-hardening; 

and can use excess construction soil 

Coal Ash, Granulated Slag, 

etc. 
1.0 ~ 1.5 approx. Granular material; self-hardening 

Volcanic Ash Soil 1.2 ~ 1.5 Natural material 

Hollow Structures 1.0 approx. Corrugated pipes, box culverts, etc. 

Wood Chips 0.7~ 1.0 
Usually to be used below ground water level; 

anti leaching measures needed 

Shells 1.1 approx. Sized 12 to 76 mm; interlocking effects 

Tire Chips 0.7~ 0.9 
Usually used above ground water level; cover 

soil layer at least 0.9m is required 

* 1tf 10000 N 

 

3. Material Properties 

EPS geofoam is a lightweight material with a good insulation and energy absorption 

characteristics. On the other hand, its strength and stiffness are comparable to some 

types of soils. EPS densities for practical civil applications range between 11 and 30 

kg/m3. For other applications like insulation higher densities are more efficient (Van 

Dorp, 1988). With its lightweight property, geofoam blocks can be easily handled 

after manufacturing, during curing, transportation or placement in the field.  

Table (2) shows 5 EPS types, which are categorized by ASTM C 578-95.  

Figure (1) shows the uniaxial compression stress strain curve of EPS 

geofoam for two different densities. The two densities shown are considered the 

extreme values for most engineering applications.  

 

Table (2). ASTM C 578-95 EPS Densities 

Type XI I VIII II IX 

Density (kg/m3) 12 15 18 22 29 
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Fig. (1). EPS Uniaxial Compression Stress Strain Curves (after Negussey and Elragi, 2000) 

 

There is no defined shear rupture for EPS geofoam under compression. More 

than 70 % strains are reached without any break point and the tests were stopped 

because the maximum travel of the machine head was reached. The 1%, the 5%, and 

the 10% strains are common reference strain level, at which the stress is considered 

as the strength of the material. Tables 3 shows the compressive strength of EPS 

geofoam as given by ASTM C578-95. 

 

Table (3). ASTM C 578-95 EPS Compressive Strength 

Density (kg/m3) 12 15 18 22 29 

Compressive Strength at 10% Strain (kPa) 35 69 90 104 173 

 

Figure (1) shows that the stress strain curve of EPS geofoam has an initial 

linear portion. The value of the slope of this initial portion is defined as the initial 

tangent modulus. Also it is known as Young’s Modulus as well as the modulus of 

elasticity. EPS geofoam initial modulus is a function of the density as shown from 

figure (1). For EPS geofoam, as shown from the same figure, there is no agreement 

from the researchers on a constant value for each density. For a 20kg/m3 density the 

initial modulus ranges between 5 Mpa and 7.75 Mpa, which means a 55% 

difference. The relation is linear for some researchers (Horvath, 1995 and Miki, H., 

1996) while it’s nonlinear for others (Duskov, 1997 and Eriksson and Trank, 1991). 

The researchers used specimens with vary dimensions. 

0

50

100

150

200

250

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Strain

S
tr

es
s 

(k
P

a)

33 kg/m3

12 kg/m3



Reducing Dynamic Lateral Loads on Earth …  5 

Duskov, (1990) reported that the back calculated moduli of elasticity of EPS 

geofoam were found to be between 13 MPa and 34 MPa under pulse force. Duskov 

(1997) after testing 20kg/m3 EPS geofoam, reported that low temperatures, water 

absorption level, and exposure to freeze-thaw cycles, separately or combined, seem 

to have no negative influence on the mechanical behavior of the EPS geofoam that 

he had tested. Elragi et al. (2000) showed the effect of sample size on the initial 

Modulus. For larger specimens, the initial modulus is higher. Poisson’s ratio value 

range between 0.05 and 0.5 are found in the literature for EPS geofoam. These 

values range from material like water (Poisson’s ratio equals to 0.5) to rigid 

materials like concrete (Poisson’s Ratio equals to 0.15). The compression behavior 

of EPS geofoam is strain rate dependent (Negussey, 1997). Higher strain rates result 

in higher initial modulus and higher compression strength.  

EPS geofoam may experience cyclic loading in a number of engineering 

applications; such as in traffic loading and earthquake loading. The majority of 

laboratory testing and field observations suggest that the cyclic load behavior of 

block molded EPS geofoam is linear elastic provided that the strains are no greater 

than approximately 1%. For three loading cycle tests, the initial tangent modulus in 

the second and third cycles is much less than that for the first cycle, when the three 

cycles are loaded to 10% strain (Eriksson and Trank, 1991). Flaate (1987) reported 

that cyclic load tests show that EPS geofoam will stand up to an unlimited number 

of load cycles provided the repetitive loads are kept below 80% of the compressive 

strength.  

Tensile strength of EPS material can be an indication of the quality of fusion 

of the pre-puffs and any recycled EPS geofoam used in the process (Horvath, 1995). 

The literature shows that its tensile strength increases with the density (ElRagi et al., 

2000). The material fails in tension as a crack on the tension side appears at the 

moment of failure and the flexural strength increases with density of the material 

(ElRagi et al. 2000). EPS geofoam is susceptible to time dependent creep 

deformation when a constant stress level is applied. Creep deformations decrease 

with density increase (Sun, 1997).  

Sheeley (2000) showed that the effect of density on interface strength of 

geofoam was negligible. Values of both peak and residual friction factor are shown 

in Table (4). Although values of 0.65 were reported for EPS geofoam to EPS 

geofoam interface, 0.5 can be considered a conservative coefficient of friction as 

Nomaguchi (1996) obtained from both static and dynamic tests.   
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Table (4). EPS Geofoam Interface Friction Factors (Sheeley, 2000) 

Interface Peak Factor Residual Factor 

Foam-Foam, 20kg/m3 (dry) 0.85 0.70 

Foam-Foam, 20kg/m3 (wet) 0.80 0.65 

Foam-Foam, 30kg/m3 (dry) 0.85 0.65 

Foam-Foam, 30kg/m3 (wet) 0.75 0.65 

Foam- Cast in Place Concrete 2.36 1 

Foam-Textured HDPE Membrane 1 ~1 

Foam- Smooth HDPE Membrane 0.29 0.23 

Foam-Smooth PVC Membrane 0.70 0.40 

 

The water absorption of expanded polystyrene is low. Although water 

absorption decreases as density increases as shown in table (5), fusion is the most 

important factor influencing the moisture resistance of the EPS geofoam. 

 

Table (5). % Volume of Water Absorption (German Specifications, Van Dorp, 1988)  

Density, kg/m3 After 7 Days After 1 Year 

15 3.0 5.0 

20 2.3 4.0 

25 2.2 3.8 

30 2.0 3.5 

35 1.9 3.3 

 

3.1 Engineering Applications 

Geofoam has now been successfully utilized in a number of countries all over 

the world. Some of these countries are Norway, The Netherlands, the United States, 

Japan, Germany and Malaysia.  

In Norway, the first road insulation project with EPS geofoam was performed 

in 1965 (Aaboe, 2000) and the first road embankment project utilizing EPS geofoam 

was completed in 1972 (Frydenlund, 1991) when the National Road 159 Flom 

Bridges project involved replacing one meter of ordinary fill material with blocks of 

EPS in embankments adjoining a bridge founded on piles to firm ground. The 

embankments were resting on a 3.0 m thick layer of peat above 10.0 m of soft 

sensitive clay. Before using EPS geofoam, settlement rates were of the order of  

20-30 cm annually and accelerating due to frequent adjustments of the road level. 
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Settlement was successfully halted after using EPS geofoam. In the Netherlands the 

first EPS geofoam projects start early seventies (Van Dorp, 1996).  

Even though EPS geofoam was used in the United States much earlier than in 

most countries, subsequent progress was slow. Recently, EPS geofoam is used in a 

growing trend in a number of applications in the States. The largest volume of EPS 

geofoam in one project is about 100,000 cubic meters in Salt Lake City in the 

reconstruction of interstate I-15 (Newman, 2009).  

The first EPS geofoam application in Japan was an embankment fill in 1985 

(Miki, H., 1996) where 470 cubic meters were utilized in the project. EPS geofoam 

fill as high as 15.0 m was constructed (Yamanaka, et al., 1996). 

In Germany, although EPS was used for the first time in the 1960s as frost 

protection layers in pavement, it was first used in highway construction in March of 

1995 (Hillmann, 1996) where EPS was utilized to minimize the differential 

settlement of a bridge approach. EPS geofoam as a lightweight fill material was first 

introduced in 1992 in Malaysia (Mohamad, 1996). Experience in Japan with EPS 

geofoam showed that EPS geofoam structures performed well under seismic loading 

as well as under static loading.  During the years of 1993 to 1995 strong earthquakes 

occurred in various parts in Japan. Hotta, et al., (1996) reported 5 earthquakes of 

magnitudes range 6.6 to 8.1. Although some damage occurred to EPS sites, Hotta et 

al., considered that EPS embankments were highly stable during earthquakes. 

 

4. Methodology 

4.1 Reducing Dynamic Loads on Retaining Structures 

Another application is the use of EPS geofoam for reducing the induced 

seismic loads against rigid non-yielding retaining structures. EPS geofoam seismic 

buffers can be used to reduce earthquake-induced loads acting on rigid retaining 

wall structures. The numerical simulations were carried out using the FLAC code 

software. The influence of the buffer zone was examined by computing the natural 

frequency of the retaining wall for the various examined cases. In general this is 

determined through a numerical study in which an investigation of the influence of 

using seismic buffer zone made of EPS geofoam on the natural periods of retaining 

walls is conducted. A model of a retaining wall with a seismic buffer zone made of 

EPS geofoam is developed and several cases were analyzed that took into 

consideration the position and thickness of the buffer zone and on the seismic 

performance of the retaining wall.   

4.2 Numerical Analysis 

A numerical model utilizing FLAC software is established with the cohesion, 

friction, dilation and tensile strength of the Mohr-Coulomb model those properties 

are assumed to remain constant. The reinforced retaining wall model with the 

assumed dimensions is shown in Figure (2).  
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Fig. (2). Wall configuration considered for the study 

 

The soil material is simulated as a strain-softening soil; the cohesion weakens 

as a function of plastic strain. 

Mesh 0.1m 

Total length=17m 

Depth 6m 

Wall 2.5m x0.5 base 

Wall web 0.5m x5.5m 

Total back fill= 6m 

Front fill 2m 

E-modulus of concrete = 2xe10    p-ratio = 0.15 

E-modulus of foam = 5xe6    p-ratio = 0.25 

Shear modulus sand=400.0e6  

Bulk modulus=666.67e6 

Density=1700 kg/m3 

Friction angle = 40o 

Cohesion =1.0xe5 

Concrete density = 2400 kN/m3 

Foam density = 20 kg/m3 
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Three cases were analyzed to investigate the effect of using the EPS geofoam 

on reducing the seismic loads on the rigid non-yielding retaining structures. 

 

5. Results and Discussion 

The Figures (3) – (8) show the results from numerical analysis of the wall using 

computer software. The results are presented in the form of developed natural 

frequency of the wall in response to horizontal acceleration. 

i. Using a 10cm-cushion in front of the wall 

 

Fig. (3). Model of RW with the EPS front cushion 

 

 

Fig. (4). Developed wall natural frequency without and with the cushion  
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ii. Using a 20cm-cushion in the backfill of the wall 

 

Fig. (5). Model of RW with the EPS back cushion 

 

 

Fig. (6). Developed natural wall frequency without and with the cushion 
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iii. Using 10cm-double cushion in the wall 

 

Fig. (7). Model of RW with the EPS front and back cushion 

 

 

Fig. (8). Developed natural wall frequency without and with the cushions 

 

The above shown results show that the existence of the foam cushion reduced 

the lateral dynamic pressure on the wall, hence reducing lateral displacement.  The 

reduction of the value of displacement depends on the amount and position of the 

compressible inclusion  

Another important result is that the fundamental natural period of the 

retaining wall varies depending on the position of the compressible cushion. Hence 

this can reduce the effect of the dynamic force by avoiding resonance between the 

structure and earthquakes. 
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6. Conclusions and Recommendations 

The presented study shows that the light-weight material; EPS Geofoam has 

a great potential for use in the civil engineering profession which may be 

summarized as follows: 

1- Expanded polystyrene (EPS) geofoam is a lightweight material that has 

been used in engineering applications long time ago 

2- Expended polystyrene can be used as a compressible sheet for all types of 

underground structures against those faces in contact with earth. 

3- Expanded polystyrene can change the overall fundamental frequency of  

contact structure hence reducing seismic effect 

4- Expended polystyrene can reduce pressure by converting passive earth 

pressure into active earth pressure utilizing the compressibility of the polystyrene 

5- Expended polystyrene can be utilized in several applications such as in 

reducing settlement below embankments, sound and vibration damping, reducing 

lateral pressure on substructures, reducing stresses on rigid buried conduits and 

several other related civil engineering applications 

It is recommended that: 

1- Extra studies have to be performed using the various types of SABIC 

polystyrene to refine the results. 

2- Experimental testing has to be performed in order to better verify the 

results of the numerical studies. 
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 تخفيض الأحمال الديناميكية الجانبية على الحوائط الساندة  
 باستخدام البوليسترين الجيوفوم 

 
 أحمد الراجى و شريف الخولى

 قسم الهندسة المدنية، كلية الهندسة، جامعة القصيم، المملكة العربية السعودية  
selkholy@qec.edu.sa and afelragi@qec.edu.sa 

 

 (16/1/2017؛ وقبل للنشر في  14/10/2016) قدم للنشر في  
 

التطبيقات الهندسية منذ وقت البوليستيرين جيوفوم هى مادة خفيفة الوزن تستخدم في  مادةملخص البحث. 
طويل. الجيوفوم له كثافته تبلغ حوالي واحد في المئة من تلك الخاصة بالتربة الطبيعية. خصائص العزل الحراري 
للجيوفوم ممتازة مع صلابة وقوة ضغط مماثلة للطين المتوسط. وقد استخدمت في العديد من التطبيقات الهندسية  

السدود والجسور، الحد من تأثير الصوت والاهتزازات، والحد من الضغط على مثل في الحد من الهبوط أسفل 
 الأساسات، والحد من الضغوط على المنشأت المدفونة تحت الأرض والعديد غيرها. 

تقدم الدراسة الحالية تطبيق أخر فى الهندسة المدنية والمتمثل في دراسة الاستخدام محتمل للجيوفوم فى تخفيض 
ميكية الجانبية على الحوائط الساندة. أظهرت الدراسة نتائج مشجعة  في هذا المجال من الناحية الأحمال الدينا 

التحليلية والتي يمكن تدعيمها ببعض النتائج المعملية لنصل نحو الاستنتاج الرئيسي أن الجيوفوم الذى تنتجه شركة 
 إلى أن هذه المادة واعدة الاستخدام في سابك السعودية يمكن أن يفيد في هذا المجال والعديد غيرها مما يشير

 مختلف التطبيقات الهندسية المدنية. 
  

mailto:selkholy@qec.edu.sa
mailto:afelragi@qec.edu.sa


Ahmad F. Alragi and Sherif M. ElKholy 18 

  
 


