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Abstract. A high performance motor drive requires fast step-tracking response with acceptable overshoot, minimum speed-dip and restore-time
following a step load change, and zero steady-state error in the command tracking and load regulation. In this paper, a comparative study is
carried out between two output-feedback control techniques to achieve a high performance induction motor. The first, named Discrete-Time
Dynamic Programming (DTDP) output feedback, uses historical data from the controlled inputs and outputs of the motor and an optimization
technique, dynamic programming algorithm, to obtain an optimum design of the needed constant output feedback gain matrix. In the last, named
Linear Matrix Inequalities (LMI) output-feedback, the reduction of the disturbance on the motor speed is done through the minimization of the H-
infinity (Hoo) norm using Linear Matrix Inequality. The design procedure is based on the linearization of the motor nonlinear current-model
around a selected operating point. The system performance of the motor equipped with DTDP and LMI controllers is analyzed using diverse tests
namely, load disturbance (regulation and tracking) and parameters variation. For completeness, the performance of a conventional Proportional-
Integral (P1) controller are also included for comparison purposes. The results are very encouraging to pursue further this study.

Keywords: Output Feedback, Linear Matrix Inequalities (LMI), H-infinity (Heo) Control, Speed Control, and Induction Motor.
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Np Number of Poles Yr rotor flux: ¥r = XX,
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Rs Stator Resistance yqr g-axis rotor flux
L Stator Inductance Ids d-axis stator current
Lsr Mutual Inductance Igs g-axis stator current
J Inertia or rotor speed
D Viscous Coefficient Tm load (mechanical) torque
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1. Introduction

Induction motors (IM) [1] represent the workhorse of the industrial drive systems. They are less costly, more
rugged, and more reliable than DC motors. The problems related to the induction motor are:

1. Stator and rotor parameters variation during motor operation

2. Difficulty in measuring the rotor time constant because of the temperature effect

3. Saturation effect on the rotor inductance and on the decoupling process between the rotor flux and
torque

4. Nonlinear behavior and time-varying dynamics

Because of these problems, classical control design could not be done properly especially when parameter
variation and load disturbance occur. To reduce the nonlinear coupling and fasten the transient response, usually
field-oriented technique is used where a decoupling process between the torque and rotor flux is done.

In general, a high performance motor drive system is characterized by [2]:

o Fast step tracking response without overshoot

e Minimum speed dip and restore time, due to a step load change

o Achievement of zero steady-state error in the command tracking and load regulation

However, if regulation characteristics with small speed dip and short restore time following a step
load change is required, relatively large overshoot, and short settling time in the speed tracking may result.
So, to improve the system performance, the controller must be robust against speed variation and external
perturbation.

Conventional Proportional-Integral-Derivative (PID) controller has been widely used in industrial
applications due to its simple control algorithm and easy implementation. However, It is difficult and complex to
design a high performance PID-controller [3] for induction motor drive systems because of system parameters
variation and load disturbance change.

Modern control strategies involving intelligent techniques such as fuzzy logic control [4-5] and neural
networks [6], represent attractive approaches. Besides, variable-structure control [7-8] is a robust technique
but has a main drawback, the chattering. The later appears in the control input and makes such controller
not attractive unless remedies are applied but at the expense of lowering the controller robustness.

State feedback [9] control requires all states to be measurable that is usually not the case unless
observers are used that add to the complexity of the overall system. The output-feedback [10-12], however,
requires only measurable system outputs to be used and thus made attractive in industrial control
engineering area.

Linear Matrix Inequalities (LMIs) [13-14] have emerged as powerful design tools in areas such as control
engineering. Three factors make LMI techniques appealing:

1. A variety of design specifications and constraints can be expressed as LMIs.

2. Once formulated in terms of LMIs, a problem can be solved exactly by efficient convex optimization
algorithms

3. While most problems with multiple constraints or objectives lack analytical solutions in terms of matrix
equations, they often remain tractable in the LMI framework. This makes LMI-based design a valuable
alternative to classical “analytical” methods.

Many control problems and design specifications have LMI formulations. This is especially true for
Lyapunov-based analysis and design, but also for optimal LQG control, He-control, covariance control, etc.
Further applications of LMIs arise in estimation, identification, optimal design, structural design, matrix scaling
problems, and so on. The main strength of LMI formulations is the ability to combine various design constraints
or objectives in a numerically tractable manner.

In this paper, two output-feedback design strategies are presented. In the first, Discrete-Time output-
feedback [10] optimized via Dynamic Programming ((DTDP) and uses historical data from the system control
inputs and outputs. In the second, Linear Matrix Inequalities output-feedback (LMI) where a minimization of
the Hoo-norm is done using linear matrix inequalities technique. The design strategies are based on a linearized
model around a selected operating point and severe tests, namely load disturbance (regulation and tracking) and
parameters variation, were applied to both controlled systems and to the conventional Proportional-Integral (PI)
controller for comparison purposes. MATLAB routines and LMI toolbox [15] were extensively used.
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2. System Modeling

Fig. (1) shows the block diagram of a current controlled induction motor circuit [5]. The state space model
is given by

dx
4 =00 +By R+Bu ()
Where
x=[yar yor o]
R=Tn
u=[las, los]"
And
dx L
1 sr
—= =——X 4+ Np(Ogyn — Xq) X+ —1
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dx 1 L
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dx, n,Lg D T
—= XA =X, 1, )——x,——
dt JLr ( 1%gs 2 ds) J 3 J

Rotor flux:y, = JX12+ Xg

Motor speed: =X
The rotor time-constant T,=L./R,

The speed of the synchronously reference frame is taken as wsyn=21150 rad/sec. The system data are given
in Table (1).
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Fig. (1). Induction motor block diagram.

Table (1). Model Parameter Values.

Parameters Values
Number of Poles, n, 2 poles
Rotor Resistance, R, 3.805 Q
Rotor Inductance, L, 0.274 H
Stator Resistance, R; 485Q
Stator Inductance, L; 0.274 H

Mutual Inductance, L 0.258 H
Inertia, J 0.031 Kg.m?
Viscous Coefficient, D 0.008 N/sec
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3. Discrete-Time Dynamic-Programming (DTDP) Output-Feedback
The state-space model given in (1)-(2) is first linearized around an operating point then a discrete-time
model [1] is derived as
Xy1 = X FAL
Y, .=Cx +Du ®)
k+1 k k

where,

xk=X(KTs), the state variable specified at kTs, k=0,1, ... etc.

uk=u(KkTs), the control input specified at kT, k=0,1, ... etc.

v«=Y(KTs), the control input specified at kTs, k=0,1, ... etc.

@, A are the state transition and input driving matrices, respectively.

The DTDP block diagram is as shown in Fig. (2) with K(s)=Fo, a constant matrix, y the measured output,
and u is the control input.

b

Uy P(s)

K(s)

Fig. (2). Block diagram for DTDP.

The state prediction equation of the discrete-time linear model described in [10,12] can take the form:

Xipl = F5Wk + F4uk 4)
The output-prediction equation has the form:
yk+1:0z2k+|3vk (5)
The prediction equation of the augmented vector wk is
Wk+1=0wk +Quk (6)

Where

Zk:[yk V-1 - yk—N+1]T
Vk:[uk—l U2 =~ uk—N+1]T
Wk=[2k Vk]T

With ()T: matrix/vector transpose.

The matrices a, B, 6, Q are defined in [10,12]. N is the measurement number of the outputs and the inputs
from t=kTs back to t=(k-N+1)Ts. The minimum number of previous measurement vectors N is selected such that
N>n/p where "p" is the number of outputs and "n" the dimension of ®.
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Equation (5) completely defines the process dynamics without reference to the state vector x.
A state feedback optimal control law Uk = FSWk is determined from the minimization of the quadratic-
performance index of the form:

r
I T
JS_kzo{xk+1Qst+1+ukHsuk} ™

Where r represents the last stage in Dynamic Programming.
Similarly, an output feedback optimal control law

u, = FOWk 8
is determined from the minimization of the quadratic-performance index of the form:
J= £ WT Qw +uTH u 9
k=0 k+1<0 k+1 "k o'k

The two performance indexes given by (7) and (8) are equivalent if (4) is substituted into (7) to get

r
_ T T T
JO—kgo{kawkkawkwkSuk} (10)
Where
Q=F{Q F
5%s 5
ol

R_2F4 QsFS (11)

T
S=F, Q,F, +H,

To reach the global optimum of Jo given by (10), the weight matrices Hs and Qs are assumed to be
symmetric positive definite matrices [10]. For stability analysis, the closed loop eigenvalues of DTDP can be
determined from (6). On the basis of assumed sampling time interval Ts, the optimization problem is thus
defined as:

r
Find Fo that minimizes J = ) WTGW
o 2o k™ k

with respect to uk = FOWk

where G=Q+F' R+F'RF .
0 0 0

To evaluate the output feedback control gain matrix F,, Dynamic Programming (DP) technique is applied
here to minimize J, for several stages starting from initial stage k=0 and moving backward until stage k=r. If r is
large enough, the DP algorithm converges to a constant feedback matrix. The multi-stage dynamic programming
algorithm [10] is summarized as:
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Stepl: Initialization process

c =0
Compute
n=R+2027c60
u=S+0" o
F=-05*uln
k=1

Step 2: Iterate while k>0 & |F-Fo| > tolerance, do
{ Fo: F
c=Q+ 0" cO+F  n+FT uF
u=S+0" o0
n=R+20Q" o0
F=-05%u'p
k =k+1 }

4. Linear Matrix Inequality (LMI) Robust Output Feedback Control

Fig. (3) shows the standard representation of the output-feedback control block diagram for the LMI-based
robust control where P(s) represents the plant while K(s) represents the controller.

We—— —
P(s) *

n

L

i

K(s)

Fig. (3). Block diagram for LMI Robust output feedback control Let.

X=AX+B,w+B,u
P(s):{z, =C,x+D,w+D,u (12)
y=C/x+Dw
and
.=A+B
K(S) - {C; KC+ Ky (13)

u=CcL+Dyy

be state-space realizations of the plant P(s) and controller K(s), respectively, and let

{XCL = ACLXCL + BCLW (14)

z,=Cq X +D W

be the corresponding closed-loop state-space equations with

T
Xoo =[x g .
The design objective for finding K(s) is to optimize the H.-norm of the closed-loop transfer G(s) from w to
Zo, 1.€.,
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G(s)=CcL (sl - AcL)*Bcr+DcL (15)

using LMI technique [14]. This can be fulfilled if and only if there exists a symmetric matrix X such that
the following linear matrix inequalities are satisfied

Al X+ XAEL BaL XCEL
BEL -1 DZL <0 "
Co X De _YZI (16)
X>0

The H.-norm of a stable transfer function G(s) is its largest input/output RMS gain over all u with the
random Mean Square (RMS) different from zero, i.e., RMS#0,

lz_|
1 G floo= sup —2L (17)

uel Wil

u=0

where L is the space of signals with finite energy and z is the output of the system G for a given
disturbance w. It is one of disturbance rejection, i.e., minimization of the effect of the worst-case disturbance on
the output. Equations (16) are being solved using the Matlab routine hinflmi.

5. Simulation and Test Results

The model of the induction motor is a linear one obtained using a sampling time selected using trial-and-
error technique. It is selected neither too small to induce a large amount of computations nor too large to end up
in a numerical instability. The value, Ts =0.01 second, was found adequate. The following tests are carried out
for the three cases namely, the machine is driven by a conventional Proportional-Integral (PI), a Discrete-Time
Dynamic Programming (DTDP) and finally a Linear Matrix Inequality (LMI) based controllers:

e Step changes in load torque

o Tracking behavior in load torque

e Change in system parameters

The continuous open-loop linear state-space system of the machine (or plant P (s)) are:

1
o nplogxg(@) nxg(2)
r
1
Ap: -np(ws-x0(3)) _ﬁ npxo(l))
anerqso i anerdso

JL JL
r r
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L
0 =t 0
T
r
L
B =| 0 0 st
p T
1 _ansrXO(Z) ansrXO(l)
J JL JL
I r r
0 0 1
c - xo(l) x0(2) 0 ) 000
p 2 2 2 2 P 1000
\/x0(1)+x0(2) \/x0(1)+x0(2)
Where
T T
X:{Wdr Var wr} u:{Tm lgs Iqs} y:[“)r wr]T
Or,
-13.89 157  0.06 0 358 0
Ap= -157 -13.89 5.70 sz 0 0 358
0 -6713 -0.26 -32.26 1.83 173
0 0 1 000
C = D =
P |1 -0010 P 1000
X =[285 -0030 785]"
=12 : .

Case 1: Conventional Proportional-Integral (P1) Controller
The system driven by a PI controller is shown in Fig. (4) where

T |
w=T, u={|ds Iqs} y=lo, v,

The controller gains used are:
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Fig. (4). System driven by a Proportional-Integral (PI) Controller.

Case 2: Discrete-Time Dynamic Programming (DTDP) output feedback

An DTDP is designed with:

N=5 number of historical data

r=51 number of stages before DP convergence

p=2 dimension of u=[lgs lgs]"

m=2 dimension of y=[yr o/]".

and

7Z=Wr

W=Thp.

The discrete closed-loop eigenvalues are:

Anooro = { -0.09+j0.87, -0.7, 0.6, -0.36£j0.24, 0.06+j0.4,

6*10°°, 9*10°+j6*10°5, 1.8*105,-1.3*10° +j1.8*10°,

6*10°}

With j?=-1

The magnitude of the discrete dominant one is: 0.876

0.34+j0.15,
-1.8*10%,

F,, =[0.0002 -0.0015-0.0134 0.0016 -0.0098 0.0005 ...
0.0005 -0.0013-5.9*10° -5.9*10° -0.0035 -0.0362 ...

-0.0005 -0.0164 -5.97*10° 0.0008 -6*10° -0.0001]
F,, =[-0.0606 -0.0026 -0.0412 -0.0070 -0.0707 0.0024

-0.0616 0.0040 0.0028 -0.0078-0.0365 -0.2442 ...
-0.0215-0.2048 -0.0036 -0.1035 1.9*10° 0.0048]

Foo| .
F, = with dimension: 2x18
02
Case 3: LMI Output Feedback (LMI)

155

A controller K(s) is designed by reducing the H.-norm below some specified value y. The selected value

was 10 but it was reduced to [1=5.3.

The obtained controller K(s) matrices are:

[-153 458 317 (420 250

A =|-526 -518 86 B, =| 526 -815
1975 510 -228 |-540 -261
[0.055 0239 0.099 00

C, = D =

K 12573 -0134 299 K™o 0

Its eigenvalues are: )”K = [— 542 -114 - 242]T

The closed-Loop system matrices are:
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[-139 157 006 019 085 0.35] 0
-157 -139 57 922 048 107 0
A - 0 -671 -026 445 -227 518 8 _|-32
cl | 250 -26 -420 -152 458 317 c o
-814 0086 526 -526 -518 859 0
|-261 277 -540 975 510 -228] | 0 |
cd:[o 0100 0 DC|=[0]

The closed-loop eigenvalues are:
xclz[-zse-jﬁee 256+ 666 -394 -7.2- [I57 -7.2+ 157 -5]'

Test 1: Load torque step changes:
The load torque Tr is varied in a step-wise fashion as seen in Fig. (5 a). The time responses of the motor
speed o, for CPI, DTDP and LMI, are depicted in Fig. (5 b).

D1 T T T T T T T

0.08 + A

0.06 .

0.04 - .

oot —Tpy i

[
T

Mechanical Torque, Tm

_D'] 1 1 1 | 1 | 1 1 1
a 1 2 3 4 5 B 7 ] 9 10

Time (s)

(a) Load torque variation
Fig. (5). Responses to step changes in T,
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(b) Rotor speed
Fig. (5). Responses to step changes in Tp,.

Test 2: Tracking behavior:
The motor is being disturbed from its steady-state with a variation in Tr, (tracking) as depicted in Fig. (6).
The time responses of the motor speed, wr, for CPl, DTDP and LMI are depicted in Fig. (7).

D1 T T T T T T T T T
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fom]
fag]
T
1

-0.05 .

Fig. (6). Load torque tracking behavior.
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]
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]

Rotor speed, ® .
S
=

=]
=
o

0.08 .

Fig. (7). Responses to tracking behavior.

Test 3: Parameters Variation:

Three motor parameters were increased by 50% from their nominal values. They are: the rotor time
constant T,, the damping coefficient D, and the inertia constant J. This large parameter change that might not be
realistic is used to demonstrate how far the proposed design is valid and acceptable. It is motivated by the
practical difficulty encountered in determining the exact values of the rotor parameters especially in a squirrel
cage induction motor with deep-bar double-cage rotor designs.

In this test, the load torque Tr, is increased by 5% and the time responses of the motor speed, oy, for CPI,
DTDP and LMI are depicted in Fig. (8).
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Fig. (8). Responses to Parameters Variation.

Remarks on the Results

From the simulation results, it is clear that the system equipped with each of the three controllers shows
good response. However, LMI shows superiority over DTDP and PI from deep/rise of the motor speed ®r
following the disturbance in the load torque Tm, point of view that is it shows the lowest amount in dips/rises in
or. Besides, the controlled system shows fast response without oscillations or overshoots. The LMI controller
can be made faster by proper selection of its parameters.

6. Conclusion

This paper has presented the design steps for two output-feedback controllers. The first uses the
Discrete-Time Dynamic Programming (DTDP) whereas, the second uses the Linear Matrix Inequalities
(LMI) techniques. The Conventional Proportional-Integral (PI) case results are also presented for
comparison purposes. The two controllers are used to improve the transient response and to minimize the
induction motor speed dips and rises following load torque disturbances and system parameters variation.
The tests have shown improved performance for both controllers. It was seen that LMI is much robust as
compared to DTDP and PI.

As an extension to this work, the LMI can be investigated deeply to improve the system response more by
a better selection of y and/or the use of pole placement technique. The test on the nonlinear model and other
nonlinearities such as limitation in the control input will be further investigated. Finally, on-line identification
will be also looked into.
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