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Abstract. A high performance motor drive requires fast step-tracking response with acceptable overshoot, minimum speed-dip and restore-time 
following a step load change, and zero steady-state error in the command tracking and load regulation. In this paper, a comparative study is 

carried out between two output-feedback control techniques to achieve a high performance induction motor. The first, named Discrete-Time 

Dynamic Programming (DTDP) output feedback, uses historical data from the controlled inputs and outputs of the motor and an optimization 
technique, dynamic programming algorithm, to obtain an optimum design of the needed constant output feedback gain matrix. In the last, named 

Linear Matrix Inequalities (LMI) output-feedback, the reduction of the disturbance on the motor speed is done through the minimization of the H-

infinity (H) norm using Linear Matrix Inequality. The design procedure is based on the linearization of the motor nonlinear current-model 

around a selected operating point. The system performance of the motor equipped with DTDP and LMI controllers is analyzed using diverse tests 

namely, load disturbance (regulation and tracking) and parameters variation. For completeness, the performance of a conventional Proportional-

Integral (PI) controller are also included for comparison purposes. The results are very encouraging to pursue further this study. 

Keywords: Output Feedback, Linear Matrix Inequalities (LMI), H-infinity (H) Control, Speed Control, and Induction Motor. 

 

List of Symbols 

 

np  Number of Poles  

Rr  Rotor Resistance 

Lr  Rotor Inductance  

Rs  Stator Resistance 

Ls  Stator Inductance  

Lsr  Mutual Inductance 

J Inertia 

D Viscous Coefficient 

 

Ψr rotor flux:

2

2

2

1r xxψ +=
   

Tr  rotor time-constant 

ψdr  d-axis rotor flux 

ψqr  q-axis rotor flux  

Ids d-axis stator current 

Iqs q-axis stator current  

ωr rotor speed       

Tm       load (mechanical) torque  
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1. Introduction 

 

Induction motors (IM) [1] represent the workhorse of the industrial drive systems. They are less costly, more 

rugged, and more reliable than DC motors. The problems related to the induction motor are:  

1. Stator and rotor parameters variation during motor operation 

2. Difficulty in measuring the rotor time constant because of the temperature effect 

3. Saturation effect on the rotor inductance and on the decoupling process between the rotor flux and 

torque 

4. Nonlinear behavior and time-varying dynamics  

Because of these problems, classical control design could not be done properly especially when parameter 

variation and load disturbance occur. To reduce the nonlinear coupling and fasten the transient response, usually 

field-oriented technique is used where a decoupling process between the torque and rotor flux is done.  

In general, a high performance motor drive system is characterized by [2]: 

• Fast step tracking response without overshoot 

• Minimum speed dip and restore time, due to a step load change  

• Achievement of zero steady-state error in the command tracking and load regulation  

However, if regulation characteristics with small speed dip and short restore time following a step 

load change is required, relatively large overshoot, and short settling time in the speed tracking may result. 

So, to improve the system performance, the controller must be robust against speed variation and external 

perturbation. 

Conventional Proportional-Integral-Derivative (PID) controller has been widely used in industrial 

applications due to its simple control algorithm and easy implementation. However, It is difficult and complex to 

design a high performance PID-controller [3] for induction motor drive systems because of system parameters 

variation and load disturbance change. 

Modern control strategies involving intelligent techniques such as fuzzy logic control [4 -5] and neural 

networks [6], represent attractive approaches. Besides, variable-structure control [7-8] is a robust technique 

but has a main drawback, the chattering. The later appears in the control input and makes such controller 

not attractive unless remedies are applied but at the expense of lowering the controller robustness.  

State feedback [9] control requires all states to be measurable that is usually not the case unless 

observers are used that add to the complexity of the overall system. The output -feedback [10-12], however, 

requires only measurable system outputs to be used and thus made attractive in industrial control 

engineering area.  

Linear Matrix Inequalities (LMIs) [13-14] have emerged as powerful design tools in areas such as control 

engineering. Three factors make LMI techniques appealing: 

1. A variety of design specifications and constraints can be expressed as LMIs. 

2. Once formulated in terms of LMIs, a problem can be solved exactly by efficient convex optimization 

algorithms   

3. While most problems with multiple constraints or objectives lack analytical solutions in terms of matrix 

equations, they often remain tractable in the LMI framework. This makes LMI-based design a valuable 

alternative to classical “analytical” methods. 

Many control problems and design specifications have LMI formulations. This is especially true for 

Lyapunov-based analysis and design, but also for optimal LQG control, H-control, covariance control, etc. 

Further applications of LMIs arise in estimation, identification, optimal design, structural design, matrix scaling 

problems, and so on. The main strength of LMI formulations is the ability to combine various design constraints 

or objectives in a numerically tractable manner. 

In this paper, two output-feedback design strategies are presented. In the first, Discrete-Time output-

feedback [10] optimized via Dynamic Programming ((DTDP) and uses historical data from the system control 

inputs and outputs. In the second,  Linear Matrix Inequalities output-feedback (LMI) where a minimization of 

the H-norm is done using linear matrix inequalities technique. The design strategies are based on a linearized 

model around a selected operating point and severe tests, namely load disturbance (regulation and tracking) and 

parameters variation, were applied to both controlled systems and to the conventional Proportional-Integral (PI) 

controller for comparison purposes. MATLAB routines and LMI toolbox [15] were extensively used. 
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2. System Modeling 

  

Fig. (1) shows the block diagram of a current controlled induction motor circuit [5]. The state space model 

is given by 

Bu 
1

Bf(x)
x

++= R
dt

d
                          (1) 

Where 

x=[ψdr ψqr ωr]T       

R= Tm       

u=[Ids, Iqs]T 
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Rotor flux:
2

2

2

1r xxψ +=    

Motor speed: ωr=x3 

The rotor time-constant Tr=Lr/Rr 

The speed of the synchronously reference frame is taken as ωsyn=2 50 rad/sec. The system data are given 

in Table (1).  

 
Fig. (1). Induction motor block diagram. 

 

Table (1). Model Parameter Values. 

Parameters Values 

Number of Poles, np 

Rotor Resistance, Rr 

Rotor Inductance, Lr 

Stator Resistance, Rs 

Stator Inductance, Ls 

Mutual Inductance, Lsr 

Inertia, J 

Viscous Coefficient, D 

2 poles 

3.805 Ω 

0.274 H 

4.85 Ω 

0.274 H 

0.258 H 

0.031 Kg.m2 

0.008 N/sec 
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3. Discrete-Time Dynamic-Programming (DTDP) Output-Feedback 

The state-space model given in (1)-(2) is first linearized around an operating point then a discrete-time 

model [1] is derived as 







+
+

+

kkk

kkk
Dux Cy

u Δx Φx

=
1

 + =
1                                      (3) 

where,  

xk=x(kTs), the state variable specified at kTs, k=0,1, … etc.  

uk=u(kTs), the control input specified at kTs, k=0,1, … etc.  

yk=y(kTs), the control input specified at kTs, k=0,1, … etc.  

,  are the state transition and input driving matrices, respectively.  

The DTDP block diagram is as shown in Fig. (2) with K(s)=F0, a constant matrix, y the measured output, 

and u is the control input. 

  

 

Fig. (2). Block diagram for DTDP. 

 

The state prediction equation of the discrete-time linear model described in [10,12] can take the form: 

 

kk
w

1k
uFFx

45
+=

+
              (4) 

 

The output-prediction equation has the form: 

kkk
vβzαy   

1
+=

+
                                                     (5) 

 

The prediction equation of the augmented vector wk is 

 

kk1k
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+
                                             (6) 
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With ()T: matrix/vector transpose. 

The matrices      are defined in [10,12]. N is the measurement number of the outputs and the inputs 

from t=kTs back to t=(k-N+1)Ts. The minimum number of previous measurement vectors N is selected such that 

Nn/p where "p" is the number of outputs and "n" the dimension of . 
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Equation (5) completely defines the process dynamics without reference to the state vector x. 

A state feedback optimal control law 
ksk

wFu =  is determined from the minimization of the quadratic-

performance index of the form: 


=





 +

++
=

r

0k
ks

T
k1k

T
1ks uHuxQxJ

s
                         (7) 

 

Where r represents the last stage in Dynamic Programming. 

Similarly, an output feedback optimal control law  

 

kok
wFu =                  (8) 

is determined from the minimization of the quadratic-performance index of the form:  
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The two performance indexes given by (7) and (8) are equivalent if (4) is substituted into (7) to get  
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Where 


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


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To reach the global optimum of J0 given by (10), the weight matrices Hs and Qs are assumed to be 

symmetric positive definite matrices [10]. For stability analysis, the closed loop eigenvalues of DTDP can be 

determined from (6). On the basis of assumed sampling time interval Ts, the optimization problem is thus 

defined as: 

Find F0 that minimizes 
=





=

r

0k
k

T
ko

GwwJ  

 

with respect to 
kok

wFu =  

 

where 
ooo

TT
RFFRFQG ++= . 

To evaluate the output feedback control gain matrix Fo, Dynamic Programming (DP) technique is applied 

here to minimize Jo for several stages starting from initial stage k=0 and moving backward until stage k=r. If r is 

large enough, the DP algorithm converges to a constant feedback matrix. The multi-stage dynamic programming 

algorithm [10] is summarized as: 
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Step1: Initialization process 

 =0  

Compute 

 = R + 2 T 

  = S +  T  

F = -0.5*-1 

k=1 
Step 2: Iterate while k>0 & |F-F0| > tolerance, do 

{  F0= F 

 = Q +  T  + F T  + F T F 

  = S +  T  

 = R + 2 T  

F = -0.5*-1 
k = k+1             } 

  

4. Linear Matrix Inequality (LMI) Robust Output Feedback Control 

 

Fig. (3) shows the standard representation of the output-feedback control block diagram for the LMI-based 

robust control where P(s) represents the plant while K(s) represents the controller.  
 

 

Fig. (3). Block diagram for LMI Robust output feedback control Let. 
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and 

 
yDζCu

yBζAζ
:K(s)
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



+=

+=
                                            (13) 

 

be state-space realizations of the plant P(s) and controller K(s), respectively, and let 

 





+=

+=

 wDxCz

wBxAx

CLCLCL

CLCLCLCL


                      (14) 

 

be the corresponding closed-loop state-space equations with 
T

ζ][x     xCL = . 

The design objective for finding K(s) is to optimize the H-norm of the closed-loop transfer G(s) from w to 

z, i.e.,   
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G(s)=CCL (sI - ACL)-1BCL+DCL                                (15) 

 

using LMI technique [14]. This can be fulfilled if and only if there exists a symmetric matrix X such that 

the following linear matrix inequalities are satisfied 

0                            

0 
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(16) 

 

The H∞-norm of a stable transfer function G(s) is its largest input/output RMS gain over all u with the 

random Mean Square (RMS) different from zero, i.e., RMS≠0,  

 

L
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||||
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sup||||
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u
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=                                                       (17) 

where L is the space of signals with finite energy and z is the output of the system G for a given 

disturbance w. It is one of disturbance rejection, i.e., minimization of the effect of the worst-case disturbance on 

the output. Equations (16) are being solved using the Matlab routine hinflmi. 
 

5. Simulation and Test Results 

 

The model of the induction motor is a linear one obtained using a sampling time selected using trial-and-

error technique. It is selected neither too small to induce a large amount of computations nor too large to end up 

in a numerical instability. The value, Ts =0.01 second, was found adequate. The following tests are carried out 

for the three cases namely, the machine is driven by a conventional Proportional-Integral (PI), a Discrete-Time 

Dynamic Programming (DTDP) and finally a Linear Matrix Inequality (LMI) based controllers: 

• Step changes in load torque 

• Tracking behavior in load torque  

• Change in system parameters 

The continuous open-loop linear state-space system of the machine (or plant P (s)) are: 
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Case 1:  Conventional Proportional-Integral (PI) Controller  

The system driven by a PI controller is shown in Fig. (4) where  
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The controller gains used are: 
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Fig. (4). System driven by a Proportional-Integral (PI) Controller. 

 

Case 2: Discrete-Time Dynamic Programming (DTDP) output feedback 

An DTDP is designed with: 

N=5 number of historical data 

r=51 number of stages before DP convergence 

p=2  dimension of u=[Ids Iqs]T  

m=2  dimension of y=[ψr ωr]T.  

and  

z=ωr  

w=Tm. 

The discrete closed-loop eigenvalues are:  

 F0 = { -0.09±j0.87, -0.7, 0.6, -0.36±j0.24, 0.06±j0.4, 0.34±j0.15,

 6*10-5,       9*10-9±j6*10-5,  1.8*10-5,-1.3*10-9 ±j1.8*10-5, -1.8*10-5, -

6*10-5 } 

With j2=-1  

The magnitude of the discrete dominant one is:  0.876 
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Case 3: LMI Output Feedback (LMI) 

A controller K(s) is designed by reducing the H-norm below some specified value . The selected value 

was 10 but it was reduced to  = 5.3.      

The obtained controller K(s) matrices are: 
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Its eigenvalues are:   T242114542 −−−=
K
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The closed-Loop system matrices are:  
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The closed-loop eigenvalues are: 

 T51572.71572.794.3666256666256 −+−−−−+−−−= jjjj
cl
λ  

Test 1: Load torque step changes:  

The load torque Tm is varied in a step-wise fashion as seen in Fig. (5 a). The time responses of the motor 

speed r for CPI, DTDP and LMI, are depicted in Fig. (5 b). 

 

 
(a) Load torque variation 

 mFig. (5).  Responses to step changes in T
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(b) Rotor speed 

Fig. (5).  Responses to step changes in Tm. 

 

Test 2: Tracking behavior:  

The motor is being disturbed from its steady-state with a variation in Tm (tracking) as depicted in Fig. (6). 

The time responses of the motor speed, ωr, for CPI, DTDP and LMI are depicted in   Fig. (7). 

  

 
Fig. (6). Load torque tracking behavior. 
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Fig. (7). Responses to tracking behavior. 

 

 

Test 3: Parameters Variation:  

Three motor parameters were increased by 50% from their nominal values. They are: the rotor time 

constant Tr, the damping coefficient D, and the inertia constant J. This large parameter change that might not be 

realistic is used to demonstrate how far the proposed design is valid and acceptable. It is motivated by the 

practical difficulty encountered in determining the exact values of the rotor parameters especially in a squirrel 

cage induction motor with deep-bar double-cage rotor designs. 

In this test, the load torque Tm is increased by 5% and the time responses of the motor speed, r, for CPI, 

DTDP and LMI are depicted in Fig. (8). 
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Fig. (8). Responses to Parameters Variation. 

 

Remarks on the Results 

From the simulation results, it is clear that the system equipped with each of the three controllers shows 

good response. However, LMI shows superiority over DTDP and PI from deep/rise of the motor speed ω r 

following the disturbance in the load torque Tm, point of view that is it shows the lowest amount in dips/rises in 

ωr. Besides, the controlled system shows fast response without oscillations or overshoots. The LMI controller 

can be made faster by proper selection of its parameters.  

 
6. Conclusion 

 

This paper has presented the design steps for two output-feedback controllers. The first uses the 

Discrete-Time Dynamic Programming (DTDP) whereas, the second  uses the Linear Matrix Inequalities 

(LMI) techniques. The Conventional Proportional-Integral (PI) case results are also presented for 

comparison purposes. The two controllers are used to improve the transient response and to minimize the 

induction motor speed dips and rises following load torque disturbances and system parameters variation. 

The tests have shown improved performance for both controllers. It was seen that LMI is much robust as 

compared to DTDP and PI.  

As an extension to this work, the LMI can be investigated deeply to improve the system response more by 

a better selection of  and/or the use of pole placement technique. The test on the nonlinear model and other 

nonlinearities such as limitation in the control input will be further investigated. Finally, on-line identification 

will be also looked into. 
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الديناميكية وآخر متين مبني على تباين المصفوفات الخطية لحلقة   -زمني مبني على البرمجة  -تصميم متحكم متقطع 
 تغذية خلفية للتحكم في سرعة محرك حثي 

 
 أحمد الخير بن سنوسي

 (SIEEE) عضو سامي بجمعية المهندسين الكهربائيين والإلكترونيين العالمية

 كهربائية، كلية الهندسة، جامعة القصيمقسم الهندسة ال
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 (م1/6/2009؛ وقبل للنشر في 26/3/2009)قدم للنشر في 
 

ة  يتطلب محرك الجر ذو كفاءة عالية سرعة الاستجابة لتتبع خطوة التغيير والمتابعة بتجاوز مقبول وأدنى قيمة لسرع  .ملخص البحث 
الإعادة جراء خضوع المحرك لخطوة في الحمل مع انعدام الخطاء أثناء متابعة القيمة المطلوبة والتغيير في الحمل.في   -الانخفاض وزمن 

 هذا البحث، نقدم دراسة مقارنة بين طريقتين للتحكم في حلقة تغذية خلفية للحصول على محرك حثي ذو كفاءة عالية.  
ويستخدم بيانات سابقة من دخل وخرج المحرك والطريقة   (DTDP) ذو حلقة تغذية خلفية زمن -الأول ويسمى متحكم مقطع

 الديناميكية للحصول على أفضل تصميم لمصفوفة الكسب المرغوبة وهي ثابتة القيمة.  -المستخدمة لتحقيق الأمثلية والمعروفة بالبرمجة
، حيث أن دراسة  (LMI)أما الآخر والمسمى متحكم ذو حلقة تغذية خلفية مصمم باستخدام تباين المصفوفات الخطية 
اللاتناهي(   -)إتش  ∞Hتقليص أثر الاضطراب )عزم الحمل( على سرعة دوران المحرك تتم بالحصول على أدنى قيمة للمعيار 

 باستخدام تباين المصفوفات الخطية. 
بنية على إيجاد النموذج الخطي للمحرك من نموذجه اللاخطي للتيار وذلك حول نقطة تشغيل مختارة.  طريقة التصميم م

تتم عن طريق إخضاع المحرك الى عدة اختبارات منها اضطراب في الحمل )التنظيم   LMIو DTDPدراسة أداء المحرك مزود بالمتحكم 
بغرض المقارنة.   (PI)التكاملي -تم إضافة دراسة أداء المتحكم التقليدي التناسبي والتتبع( وتغيير في البارامترات. وإتماما لهذه الدراسة، 

 النتائج مشجعة جدا لمتابعة هذه الدراسة. 
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