
Journal of Engineering and Computer Sciences, Qassim University, Vol. 3, No. 1, pp. 59-71 (January 2010/Muharram 1431H) 

 

 

 

 

 

 

Parametric General Solutions of Boolean Equations Via 

Variable–Entered Karnaugh Maps 

Ali Muhammad Ali Rushdi* and Motaz Hussain Amashah 

 
Department of Electrical and Computer Engineering, 

King Abdulaziz University, 
PO Box 80204, Jeddah 21589, Saudi Arabia, 

*arushdi@kau.edu.sa 
 

(Received 22/6/2009; accepted for publication 7/1/2010) 

 

Abstract. A new method for obtaining a compact parametric general solution of a system of Boolean equations is presented. The method 

relies on the use of the variable-entered Karnaugh map (VEKM) to implement various steps of the solution procedure and to ensure 

minimization of the expressions obtained. It is highly efficient as it requires the construction of natural maps that are significantly smaller 
than those required by classical methods. Moreover, the method is applicable to general Boolean equations and is not restricted to the two- 

valued case. As an offshoot, the paper contributes some pictorial insight on the representation of “big” Boolean algebras and   functions. It 

also predicts the correct number of particular solutions of a Boolean equation, and produces a comprehensive list of particular solutions, if 
desired. Details of the method are carefully explained and further demonstrated via an illustrative example. 
Key Words. Boolean equations, Parametric general solutions, Particular solutions, Variable-entered Karnaugh maps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
59 

mailto:arushdi@kau.edu.sa


60 Ali Muhammad Ali Rushdi and Motaz Hussain Amashah 
 

 

1. Introduction 

 

The topic of Boolean equations has been a hot topic of research for almost two centuries and its importance can 

hardly be overestimated. Boolean-equation solving permeates many areas of modern science such as logical 

design, biology, grammars, chemistry, law, medicine, spectroscopy, and graph theory [1, 2]. Many important 

problems in operations research can be reduced to the problem of solving a system of Boolean equations. The 

solutions of Boolean equations serve also as an important tool in the treatment of pseudo-Boolean equations and 

inequalities, and their associated problems in integer linear programming [3]. 

To solve a system of n Boolean equations, the equations are usually combined into an equivalent single 

Boolean equation whose set of solutions is exactly the same as that of the original system of equations. This is 

conceptually simpler than obtaining the set of solutions for each equation and then forming the intersection of 

such sets to obtain the set of solutions of the overall system. Typically, general subsumptive or parametric 

solutions are sought [1-5]. Such general solutions are compact forms from which an exhaustive enumeration of 

particular solutions can be readily obtained. All types of solutions are obtainable by either algebraic or map 

methods [1, 2, 6-10]. 

Both Brown [1, 2] and Tucker and Tapia [6, 7] solved Boolean equations using a Marquand diagram (also 

called Veitch chart) in which natural binary order is followed, or used a Conventional Karnaugh Map (CKM) in 

which the rows and columns are arranged according to a reflected binary code. Their methods in [1, 2, 6, 7] are 

restricted to (or reduce their subject to) two–valued Boolean variables. All these methods state their rules in cell- 

wise tabular form. 

Rushdi [8, 10] developed yet another mapping method for obtaining a subsumptive general solution of a 

system of Boolean equations. This method is not restricted to the two-valued case and requires the construction 

of maps that are significantly smaller than those required by earlier procedures. This is because it relies on the 

use of a more powerful map, namely the variable-entered Karnaugh map (VEKM). The VEKM is an adaptation 

of the CKM that retains most of its pictorial insight and effectively combines algebraic and mapping techniques. 

Historically, the VEKM was developed to double the variable-handling capability of the CKM [11]. Later, the 

VEKM was shown to be the direct or natural map for finite Boolean algebras other than the bivalent or 2-valued 

Boolean algebra (switching algebra) [1, 8, 10, 12, 13]. These algebras are sometimes called ‘big’ Boolean 

algebras, and are useful and unavoidable, even if unrecognizable, in many applications [1]. 

In the present work, we develop a powerful VEKM method to implement an existing procedure [1, 2] for 

deriving the parametric general solution of a system of Boolean equations. This VEKM method is more efficient 

than the CKM method in [2], since it requires significantly smaller maps. Another merit of this VEKM is that it 

produces the solution in the most compact form, thanks to a well-known VEKM minimization procedure [11- 

13]. As an offshoot, the present work contributes some pictorial insight on the representation of “big” Boolean 

algebras and functions. Moreover, it correctly predicts the number of particular solutions of the pertinent system 

of equations, and it identifies a pitfall in an earlier attempt at such a prediction in [2]. If desired, the compact 

parametric solution obtained is expanded into an exhaustive list of particular solutions. 

The rest of this paper is organized as follows. Section II introduces some notation, while Section III  

reviews pertinent properties of Boolean algebras and addresses the question of pictorial representations of 

Boolean algebras and functions. Section IV presents a new VEKM method for deriving the parametric solution 

of a Boolean equation, which is a map adaptation of an existing algebraic procedure. Section V demonstrates the 

VEKM method via a big-Boolean-algebra example. Section VI addresses the topic of the number of particular 

solutions and their exhaustive listing. Section VII concludes the paper. 

 

2. Representations of Boolean Algebras and Functions 

 

A Boolean algebra is a quintuple B = (B, , , 0, 1) in which B is a set, called the carrier;  and  are 

binary operations on B and the zero (0) and unit (1) elements are distinct members of B, with certain postulates 

on commutativity, distributivity, binary-operation identities and complementation being satisfied [1-5]. The 
following facts about a Boolean algebra can be deduced : 

1. Every element X of B has a unique complement X . 
2. There is a partial-order or inclusion (≤) relation on B that is reflexive, anti-symmetric, and transitive. 
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3. A Boolean algebra B enjoys many useful properties such as associativity, idempotency, absorption, 

involution, consensus and duality. 
4. A Boolean algebra B is a complemented distributive lattice with distinct 0 and 1 elements. 

5. A nonzero element Z of B is said to be an atom of B iff for every X  B, the condition Z ≤ X implies 
that X = Z or X = 0. 

6. Every finite Boolean algebra B is atomic, i.e. for every nonzero element X  B, there is some atom Z 

such that Z ≤ X. 

7. Examples of Boolean algebras include the algebra of classes (subsets of a set), the algebra of 

propositional functions, the arithmetic Boolean algebra (where  and  denote “the least common multiple” and 

“the greatest common divisor”), as well as the switching or two-element Boolean algebra. 

8. Boolean algebras with the same number of elements are isomorphic. 

9. Every finite Boolean algebra B has 2m element, where m is the cardinality of (number of elements in) the 

set of atoms of B. 

An n-variable function f: Bn → B is Boolean iff it can be expressed in the minterm canonical form 

f(X)  =   f(A)   XA, (1) 

where the ORing operation  in (1) extends over all A = (a1, a2, …, an)  {0, 1}n, and XA is defined for X = 

(X1 , X2 ,…, Xn)  Bn as 
XA =  X 

a1  
X 

a 2  
........X 

an 
, (2) 

1 2 n 

where for X  B and a  {0,1}, X a is defined by 
X 0 =   X , (3a) 

X 1 = X   . (3b) 

In (1), the function values f(A), where A  {0, 1}n are called the discriminates of f(X). 

A dramatic consequence of (1) is that a Boolean function f: Bn → B, where B is a carrier of 2m elements, is 

uniquely determined by a truth table or map partially representing f for the restricted domain {0, 1}n which is a 

strict subset of the complete domain Bn. Such a representation needs 2n table or map cells. The complete function 

table of f (which covers the complete domain Bn, and hence requires (2m)n = 2mn table lines or map cells) is 
neither warranted nor needed. In fact, such a complete table should be avoided. Not only does it require tedious 

work, but it also poses a problem of checking consistency in its Bn/{0, 1}n part. 
It is customary to name the elements of B in terms of a minimum number of abstract variables   Y = (Y1, Y2, 

…, Yk). Usually the elements of B are taken as the elements of the free Boolean algebra FB(Y) = FB(Y1, Y2, …, 

k 
Yk). FB(Y) is isomorphic to the Boolean algebra of switching functions of k variables, and has 22 elements. 

This method works directly when m = 2k. It is also applicable when 2k-1< m < 2k, provided that certain 

constraints are added to nullify some atoms of FB(Y), i.e., some mini-terms of the switching algebra isomorphic 

to FB(Y). 
The first two Boolean carriers are B2 = {0, 1} and B4 = {0, 1, a , a }. Let us temporarily jump to the fourth 

Boolean carrier B16 = FB(a, b) whose elements constitute the hypercube lattice shown in Fig. (1). This carrier has 
 

4 atoms ab , ab, ab and ab which constitute the 4 dimensions of the hypercube. Now, if one of these atoms is 

nullified (e.g., if we set ab to 0), the hypercube in Fig. (1) loses one of its four dimensions, and collapses into 

the cube of Fig. (2), which constitutes the third Boolean carrier B8. Similarly, FB(Y1, Y2, Y3) can be used to 

represent B256 directly, or to represent B32, B64, B128 with 3, 2, and 1 atomic constraints respectively. 

We now consider the question: What is the natural map for f (X) : Bn → B, with B having 2m elements 

where 2k-1< m ≤ 2k. The restricted input domain for this function is {0, 1}n representing only the bivalent values 

of X = (X1, X2, …, Xn). The entries of the map could by any of the 22 
k 

switching functions of Y = (Y1, Y2,…, Yk), 

with possible ORing with don’t care terms representing the nullified atoms when m < 2k. The map described this 

way is nothing but the Variable-Entered  Karnaugh Map  (VEKM)  typically used  to  represent an incompletely- 
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specified switching function f(X;Y): {0, 1}n+k → {0, 1} using n map variables X and k entered variables Y [8, 10- 

13]. 

Note that instead of a conventional map representation of the switching function of (n+k) variables (X; Y) 
as f (X; Y) {0, 1}n+k → {0, 1} which has constant {0, 1} entries , a VEKM divides the input variables into n map 

variables X and k entered ones Y, and therefore represents the function f(X): {0, 1}n → {0, 1}k with variable 

entries belonging to FB(Y). Therefore, a VEKM is the “natural” map for representing f(X): Bn → B where B has 

2m elements and 2k-1< m ≤ 2k. In other words, the VEKM is the natural map for a Boolean function f(X), since its 

input combinations is the restricted domain of f and its entries cover the range of f. An attempt to represent a big 
Boolean function via a conventional Karnaugh maps (CKM) should be discouraged. Such a representation is a) 
less efficient, as it produces significantly larger maps, and b) conceptually misleading, as it inadvertently shifts 
symbols used in describing the output of a function into extraneous inputs, and at the same time conceals the 
actual nature of this output by reducing it into a bivalent form. 

A  conventional  Karnaugh  map   is  conceptually  meaningful  however,  for  solving  a  switching  equation 

involving the function f (X; Y): B2
n+k → B2, when it is required to express a set of dependent switching variables 

X in terms of a set of independent switching variables Y [14]. 

Fig. (1). A lattice indicating the partial ordering among the 16 elements of B16. 
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Fig. (2). The lattice in Fig. (1) when collapsed under the condition a b = 0. 

 

3. VEKM Derivation of Parametric Solutions 

 

Brown [1, 2] proved that n parameters are sufficient to construct a parametric general solution of an n- 

variable Boolean equation g(X) =1, where g: Bn → B. He proposed a procedure for constructing such a solution 

using the fewest possible parameters, p1, p2, …, pk, which are elements of B, where k  n. We adapt this 

procedure of Brown into a VEKM procedure as follows: 

1. Construct a VEKM representing g(X). Such a construction is achieved via a Boole-Shannon tree 

expansion [11-13]. If the original Boolean equation is in the dual form f(X) = 0, then construct a VEKM for f(X), 

and complement it cell-wise [15] to obtain a VEKM for 
 

 

f ( X ) = g( X ). 

2. Expand the entries of the VEKM of g(X) as ORing of appropriate atoms of the Boolean carrier B, or 

equivalently as a minterm expansion of the free Boolean algebra representing B. 

3. If certain atoms of B do not appear at all in any cell of the VEKM for g(X), then these atoms must be 

forbidden or nullified. Such nullification constitutes a consistency condition for the given Boolean equation. 

4. Construct a VEKM for an associated function G(X1, X2, …, Xn; p1, p2, …, pk). This VEKM is deduced 

from that of g(X1, X2, …, Xn) through the following modifications: 

a) Each appearance of an entered atom in the VEKM of g is ANDed with a certain element of a set of 

orthonormal tags of minimal size. Table (1) gives examples of such sets as a function of the number of cells in 

which an atom appears. An orthonormal set consists of a set of terms Ti, i = 1, 2, …, k, which are both 

exhaustive (T1 T2 … Tk = 1) and mutually exclusive (Ti Tj = 0 for 1  i < j ≤ k ). 

b) Each nullified atom is entered don’t care in all the VEKM cells. 

5. The parametric solution is 

Xi = The sum (ORing) of the 2n-1 cells constituting that half of the VEKM in which Xi is asserted 

( Xi = 1), i = 1, 2, …, n. (4) 

6. Apply an appropriate VEKM minimization procedure [11-13] to recast (4) in a minimal form. 
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16 

 

Table (1). Minimal orthonormal sets of tags attached to instances of each atom depending on the number of cells in which it appears 

(Each orthonormal set consists of exhaustive and mutually exclusive terms). 
 

The No. of 

cells in which 

an atom 

appears 

 

A set of orthonormal tags of minimal size 

The 

minimum 

number of 

parameter 

  s required  

1 { 1 } 0 

2 {   p1 , p1  } 1 

3 { p1 , p1 p2 , p1 p2 } 
2 

4 { p1 p2 , p1 p2 , p1 p2 , p1 p2 } 

5 { p1 p2 , p1 p2 , p1 p2 , p1 p2 p3 , p1 p2 p3 } 

6 { p1 p2 , p1 p2 , p1 p2 p3 , p1 p2 p3 , p1 p2 p3 , p1 p2 p3 } 
3 

7 { p1 p2 , p1 p2 p3 , p1 p2 p3 , p1 p2 p3 , p1 p2 p3 , p1 p2 p3 , p1 p2 p3 } 

8 { p1 p2 p3 , p1 p2 p3 , p1 p2 p3 , p1 p2 p3 , p1 p2 p3 , p1 p2 p3 , p1 p2 p3 , p1 p2 p3 } 

4. A Big Boolean-algebra Illustrative Example 
 

Let us apply the present method in terms of a VEKM representation to find the parametric general 

solution of an equation of the form g(X1, X2, X3) = 1, where g is a  Boolean function g: B 
3 
→ B16 and B16 

is the Boolean carrier of 16 elements shown in Fig. (1). Note that the complete input space of g consists of 163 = 
4096 combinations of X, but g is uniquely defined by the values assigned to it on only 8 combinations of X, 
namely those belonging to {0, 1}3. Let g be given by the formula 

g (X) = 
 

 

b X 1 X 2 X 3  abX 1 X 2  ab X 1 X 2  ab X 1 X 2  aX 1 X 2 X 3 = 1. (5) 

Equation (5) has been solved by Brown [2]. His first step is to expand g not only with respect to the 3 
variables X1, X2, and X3 but further with respect to the “constants” a and b thereby producing a 5-variable 32-cell 
Karnaugh map. In our present procedure, however, we expand g only with respect to the true variables X1, X2, 
and X3, thereby representing g by the 8-cell VEKM in Fig. (3) which has X1, X2, and X3 as map variables and has 
a and b as entered “variables”. Since a and b are actually constants, this VEKM is a natural map for g. Now, Fig. 

(4) shows each of the entries of the map of g in Fig. (3) being expanded as ORing of appropriate atoms of B16, or 

equivalently as a sum of certain  minterms  of  FB(a,  b). Out  of  the  4  atoms  of  B16,  three  atoms,  namely, 

ab , ab , and  ab   appear somewhere in the cells of the map of Fig. (4), while the fourth atom ( ab ) does not 

appear at all therein. This means that the atom ab is nullified or forbidden ( ab = 0 ). In Fig. (5), the function 

g(X1, X2, X3) is replaced by an associated function G(X1, X2, X3, p1, p2), where each appearance of an entered  
atom in Fig. (4) is ANDed with a certain element of a set of orthonormal tags of minimal size (See Table 1). The 

atom 
 

 

ab appears in 4 of the 8-cells of the map in Fig. (4), so each of these 4 appearances is tagged with a 

particular element of the orthonormal set { p1 p2 , p1 p2 , p1 p2 , p1 p2 }, respectively. The atom ab appears in 3-

cells of the map of Fig. (4), and hence each of these 3 appearances is ANDed with its own tag selected from 

the orthonormal set { p1 , p1 p2 , p1 p2 }. Finally, the atom ab made its appearance 3 times in the cells of the 

map of Fig. (4), and utilized a set of orthonormal tags equivalent to that of the atom ab . In assigning tags to 

various instances of various atoms, slight simplifications are achieved if adjacent tags are located in adjacent 

cells whenever possible. The map in Fig. (5) is now completed by adding the nullified atom ( ab ) as a don’t- 

care entry in each of the 8-cells of the map. 
Now, the parametric solution can be readily deduced from Fig. (5). For i = 1, 2, and 3, the variable Xi is 

equal to the sum (ORing) of the 4-cells constituting half of the map for which Xi is asserted, i.e., for which Xi = 
1. This means that 
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X1 

ab  ab ab  ab ab ab 

X2 ab ab ab ab 

X3 

a b ab ab 

X2 ab ab ab ab 

X3 

 
 

  

X1 = ab p1 p2   ab p1 p2   ab p1 p2   ab p1 p2   d (ab) , (6a) 

X2 = ab p1 p2  ab p1 p2  ab p1 p2  ab p1 p2  d (ab) , (6b) 

X3 = ab p1 p2  ab p1 p2   ab p1 p2   ab p1   ab p1 p2   d (ab) , (6c) 

The expressions (6) can be minimized by any algebraic or map method, such as the VEKM minimization 

procedure in [11-13]. Due to space limitations, we do not elaborate on this procedure herein, though we give the 

reader a glimpse of its details in Fig. (6) and Fig. (7). Each of these two figures shows pictorially and succinctly 

how  the  VEKM  minimization  procedure  achieves  minimal  expressions  for  X1,  X2,  and  X3.  These minimal 

expressions are 

X1 = 
 

 

p1b , (7a) 

X2 =  p1 (a  b) , (7b) 

X3 = 
 

 

p2b   p1 p2   p1a , (7c) 

In the general solution (7), the two parameters p1 and p2 are independently chosen elements of the underlying 
Boolean algebra, i. e., of the B16 carrier in Fig. (1) that collapsed into a B8 carrier in Fig. (2). Since each of p1 and 

p2 can assume one out of eight possible values, the total number of combinations of values for p1 and p2 is 82 or 
64 values. This number is an upper bound on the number of particular solutions of Equation (5). The actual 

number of particular solutions of Equation (5) is strictly less than this upper bound, since there are different 

combinations of (p1, p2) that produce identical particular solutions of Equation (5). For example, each of the 
parameter assignments (p1, p2) = (0, 0) and (p1, p2) = (0, b) produces the particular solution (X1, X2, X3) = (0, 0,   

a ). 
X1 

 

g (X1,, X2,  X3) 
Fig. (3). A natural map representation of the Boolean function g given by (5). 

 

 

 
 

 

 

 
 

 

 

 

g (X1, X2, X3) 
Fig. (4). Entries of the map for the function g in Fig.(3) expanded in terms of atoms of B16 or minterms of FB(a , b). 
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ab p1 p2 

 ab p 

 

 
ab p1 

 ab p p 

X1 

 

 
ab p1 p2 

 
 

 

 

 
 

ab p1 p2 

 
      1 

 d (ab) 

 

X 
ab p1 p2 

     1 2 

 d (ab) 

ab p1 p2 

 
 

 d (ab) 

 
ab p1  p2 

 
 

 d (ab) 

 
ab p1  p2 

 
 

 d (ab)  d (ab)  d (ab)  d (ab) 
 

X3 

G (X1, X2, X3; p1 , p2 ) 
Fig. (5). Each appearance of an entered atom in Fig.4 is ANDed with a certain element of a set of orthonormal tags, while the atom 

ab that appears nowhere in Fig. 4. is entered don't care. 

 

 

 

 

Fig. (6). VEKM expression of the parametric solution. 

2 
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Fig. (7). An alternative VEKM expression of the parametric solution. 

 

 
5. Direct Derivation of Particular Solutions 

 

Any particular solution is obtained by randomly retaining a single instance of each of the entered atoms 
 

 

in the map of Fig. (3). Figure (8) shows the case where the atom ab is retained in the 
 

   

X 1 X 2 X 3 cell, the 

atom ab is kept in the 
 

 

X 1 X 2 X 3 cell, and the atom ab is retained in the 
 

 

X 1 X 2 X 3 cell. Note that the 

atom ab was not entered in Fig. (3) and hence is not retained in Fig. (8). 

As stated earlier, the consistency condition is ab = 0 , which means that the atom ab is a forbidden 

or cannot – happen entity, and hence it appears don’t-care in each cell of Fig. (8). In the particular solution 

obtained, the value of the Xi variable is the disjunction of entries in the Xi half map, augmented by a don’t-care 

ab , i.e., 

X1 = ab  d (ab) = a , (8a) 

X2 = ab  ab  d (ab) = a  b , (8b) 

X3 = ab  d (ab) = b . (8c) 

The number of particular solutions for this case = 3 x 3 x 4 = 36, a number which is well below the 

upper bound of 64. 

Brown [2, pp. 192-193] obtained a particular solution using a 5–variable Karnaugh map representation in which 

he used the parameters a and b as extra map variables. His solution is similar to the present one, with 

the exception that he did the equivalent of randomly adding the forbidden atom 

Therefore, he obtained the particular solution 

 
 

ab to the cell X 1 X 2 X 3 . 

X1 =  ab  ab = a , (9a) 

X2 =  ab  ab , (9b) 

X3 = ab  ab = b , (9c) 

which is not different from (8) if the consistency condition is invoked . However, the freedom of adding 

ab arbitrarily asserted to one of 8 cells produced the erroneous prediction of 388 particular solutions [2, p. 

192], an overestimation by a multiplicative factor of 8, and also a violation of the pertinent upper bound. 

In general, the number of particular solutions for any big Boolean-algebra equation g(X)=1 can be 

obtained by drawing the natural Karnaugh map for g(X) and observing the number of times each entered atom of 

g(X) makes its appearance in the cells of the map, i.e., 

Number of particular solutions = 

П (Number of times an atom appears in the map of g(X)), (10) 
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d (ab) 

 
ab  d (ab) 

 
d (ab) 

 
d (ab) 

 

where the product operator (П) in (10) runs over every entered atom in the map of g(X). 

If desired, a complete listing of all particular solutions can be obtained in a variety of ways such as (a) 

exhaustively and directly enumerating particular solutions by repeatedly following the strategy of this section, i. 

e., by noting every instance in which each entered atom is retained once in the natural map of the function g, (b) 

assigning independent values to the parameters in a parametric general solution, and (c) expanding a tree of sub- 

cases for a subsumptive general solution [1, 2, 8, 10]. 

Table (2) explicitly lists all the particular solutions of the equation g =1 in (5). These solutions are all 

the valid solutions (and nothing else) produced individually without any kind of overlapping or repetition. For 

each of these solutions g can be shown to equal 
 

 

a  b which is 1 according to the consistency condition 

( ab = 0 ). However, Table (1) is not the recommended form for a solution representation since it details a large 

number of solutions and obscures regularities in their form. 

 

 

 

X2 

d (ab) 

 

X3 
 

Fig.(8). Pertaining to the derivation of one particular solution. 

 
Table (2). Listing of particular solutions of equation (5): 

 

X1 X2 X3 X1 X2 X3 

0 0 a ab 0 a 
0 0 b ab 0 b 
0 b a ab b a 

0 b a  b ab b a  b 
 

 

0 b b 

0 b 1 

ab b b 

ab b 1 

a a 0 b a 0 

a a a b a a 

a a ab b a ab 

a a b b a b 

a a  b 0 b 

a a  b b b 

a a  b a b 

a  b 0 

a  b b 

a  b a 

a a  b 

a a  b 

a  b b 
 

  

ab b 

a  b 

a  b 

a  b 

ab 

a a  b a b 

a a  b b b 

a a  b 1 b 

a  b a 

a  b b 

a  b 1 
 

ab 

 
d (ab) 

 

ab  d (ab) 
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6. Conclusions 

 

This paper presents a new method for obtaining the most compact form of the parametric general 

solution of a system of Boolean equations. The method is based on the use of the variable-entered Karnaugh map 

and hence is an effective combination of mapping and algebraic methods. The method starts by reducing a 

Boolean system of equations into a single equation of the form g(X) = 1, expressing g(X) in appropriate VEKM 

form and then modifying this VEKM by augmenting its atomic entries by appropriate elements of sets of 

orthonormal tags which are products of the parameters used. The method then proceeds by constructing small 

VEKMs for the pertinent variables X. Each of these latter functions is an ISBF that appears in a form suitable for 

VEKM minimization. The technique proposed herein is not restricted to two-valued Boolean algebras as clearly 

attested to by the illustrative example in Section V. As an offshoot, the paper contributes some pictorial insight 

on the representation of “big” Boolean algebras and functions. It also predicts the correct number of particular 

solutions of a Boolean equation, and produces a comprehensive list of particular solutions. 

The concepts and method developed herein can be utilized in various application areas of Boolean 

equations [1-10, 16]. In particular, an automated version of the present Boolean-equation solver can be applied in 

the simulation of gate-level logic. However, such an application must handle the incompatibility between the 

lattice structure of ‘big’ Boolean algebras, which are only partially ordered, and multi-valued logics, which are 

totally ordered [17]. The ideas expressed herein can also be incorporated in the automated solution of large 

systems of Boolean equations [18]. They can also be extended to handle quadratic Boolean equations [19], 

Boolean ring equations [4, 5, 20], and Boolean differential equations [21]. 

 
List of Symbols 

n number of input variables X for a Boolean function f(X). 

m cardinality of the set of atoms of a Boolean algebra B. 

k minimum number of symbols used in a free Boolean algebra to represent the elements of a Boolean 

carrier B. 
A/B the set difference of sets A and B = { X | X  A, X  B}. 

X an n-tuple (X1, X2, …, Xn ) of Boolean variables Xi  B. 
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