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Design Charts of Optimal Canal Section for Minimum Water Loss

Yousry Mahmoud Ghazaw

College of Engineering, Qassim University, Qassim, KSA
ghazaw@yahoo.com

(Received 17/12/2009; accepted for publication 1/5/2010)

Abstract. Seepage and evaporation are the most serious forms of water losses in an irrigation canal
network. Seepage loss depends on the channel geometry, whereas evaporation loss is proportional to the
area of the free surface. In this investigation, a methodology has been devised which describes the
optimal canal dimensions to convey a particular discharge. The objective nonlinear water loss function,
for the canal, which comprises seepage and evaporation losses, is developed. Two constrains, minimum
permissible velocity as a limit for sedimentation and maximum permissible velocity as a limit for erosion
of canal, have been taken into consideration in the canal design procedure. Using Lagrange's method of
undetermined multipliers, the optimal canal dimensions are obtained which give the least water loss.
Using a random search method, a simple computer program was developed to carry out design
calculation and provide the optimal canal dimensions. A set of design charts has been prepared by
plotting the results. The proposed charts facilitate easy design of the optimal canal dimensions
guarantying minimum water loss and computation of water loss from the canal section without going
through the conventional and cumbersome trial and error method. A design example with sensitivity
analysis has been included to demonstrate the simplicity and practicability of the proposed method.
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List of Symbols

A flow area [m?];

b bed width of canal [m];

E evaporation discharge per unit free surface area [m/s];
Fs seepage function [dimensionless];

k coefficient of permeability [m/s];

m side slope [dimensionless];

n Manning’s roughness coefficient [dimensionless];
Q discharge [m%/s];

Qe evaporation loss per unit length of canal [m?/s];
Os seepage loss per unit length of canal [m?/s];

Qw total water loss per unit length of canal [m2/s];

R hydraulic radius [m];

So bed slope [dimensionless];

T width of free surface [m];

\Y average velocity [m/s];

Vi limiting velocity [m/s];

Yn normal depth [m];
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1. Introduction

The trapezoidal section is the most common and practical canal cross section, which
is used to convey water for irrigation, industrial and domestic uses around the world.
An irrigation canal may be a rigid or mobile boundary canal. The loss of water due
to seepage and evaporation from irrigation canals constitutes a substantial
percentage of the usable water. According to the Bureau of Indian Standards, [1] the
loss of water by the seepage from unlined canals in India generally varies from 0.3
to 7.0 m®s per 10® m? of wetted surface. The seepage loss from canals is governed
by hydraulic conductivity of the subsoil, canal geometry, and location of water table
relative to the canal.

Canals are lined to control the seepage. But canal lining deteriorates with
time and hence, significant seepage losses continue to occur from a lined canal [2].
Therefore, seepage loss must be considered in the design of a canal section. Several
investigators [3,4,5,6,7,8,9,10] presented canal design methods considering seepage
loss.

A transmission canal conveys water from the source to a distribution canal.
Many times the area to be irrigated lies very far from the source, and hence requires
long transmission canals. For example, the Nobaria canal in Egypt has the
transmission canal length of 190 km carrying a discharge about 160 m%/s.

Water lost by seepage cannot be recovered without the use of costly pumping
plant. In addition excessive seepage losses can cause low lying areas of land to
become unworkable. As the water table rises, water logging and soil Stalinization
can occur, necessitating the installation of elaborate and costly drainage systems.
Furthermore the cultivable area is reduced, resulting in a loss of potential crop
production.

By the time the water reaches the field, more than half of the water supplied
at the head of the canal is lost in seepage and evaporation [11]. Seepage loss is the
major and the most important part of the total water loss [8]. The other part i.e.
evaporation loss is important particularly in water scarce areas. Considerable part of
flow may be lost from a network of canals by the way of evaporation in high
evaporating conditions. This needs special consideration for a long channel carrying
small discharge in arid regions. Thus, care must be taken in the design of such
canals to account for evaporative losses along with seepage loss.

Studies of canal design for minimum water loss have been carried out by
several investigators [12-15]. These studies besides their difficulties to be applied by
the practicing engineer, no attention has been made to consider the side slope
constrain.

In the present study using explicit equations for seepage loss [8], the
evaporation equation, and Manning's equation for open channel flow [16], minimum
water loss sections have been obtained by applying Lagrange's method of
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undetermined multipliers [17] for triangular, rectangular, and trapezoidal canal
sections and presented in easy use simple design charts.

2. Objective Function
The sum of seepage and evaporation losses is considered as an objective function.
The aim is to minimize the objective function.
Water losses:

Water is lost from canals by seepage through the sides and bottom and by
evaporation from the water surface. Seepage rates from unlined canals can be
extremely large, and even lined channels never seem to eliminate water loss through
sides and bottoms. Measured seepage rates from lined canals vary widely [18]. The
best concrete-lined channels may lose about 8 mm/day of water through wetted
boundary surfaces.

Evaporation Loss
The Evaporation loss from flowing canals, can be expressed as

9.=E.T ()

where ge = evaporation discharge per unit length of canal (m?/s); E = evaporation
discharge per unit free surface area (m/s); and T = width of free surface (m). See fig.
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Fig. (1). Canal Sections: (a) Trapezoidal Section, (b) Rectangular section, (c) Triangular Section.

Seepage Loss

Providing perfect lining can prevent seepage loss from canals but cracks in
lining develop due to several reasons and performance of canal lining deteriorates
with time. An examination of canals [2] indicated that even with the greatest care
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the lining does not remain perfect. A well maintained canal with 99% perfect lining
reduces seepage about 30-40% only [2]. Thus significant seepage losses occur from
a canal even if it is lined. The seepage loss from canals is governed by hydraulic
conductivity of the subsoil, canal geometry, and potential difference between the
canal and the aquifer underneath which in turn depends on the initial and boundary
conditions. Seepage losses are also influenced by clogging of the canal surfaces
depending on the suspended sediment content of the water and on the grain size
distribution of the suspended sediment particles. The clogging process can decrease
the seepage discharge both through bottom and slopes. Thus the seepage loss can
change within time and under certain conditions it can diminish. Therefore, the
seepage loss can be higher at the beginning of the canal operation and can be lower
after a few years of operation.

The seepage loss from a canal in an unconfined flow condition is finite and
maximum when the potential difference is very large e.g. when the water table lies
at very large depth. The steady seepage loss from an unlined or a cracked lined canal
in a homogeneous and isotropic porous media, when water table is at very large
depth, can be expressed as [8].

qs: kyn 'Fs (2)
where gs = seepage discharge per unit length of canal (m%s); k = coefficient of
permeability (m); y» = normal depth of flow in the canal (m); and Fs = seepage
function (dimensionless), which is a function of channel geometry. Graphical
representation of equation (1) is plotted in fig. (2).

The seepage function can be estimated for different sets of specific
conditions for a known canal dimensions [3,19,20]. The analytical form of these
solutions, which contain improper integrals and unknown implicit state variables,
are not convenient in estimating seepage from the existing canals and in designing
canals considering seepage loss. These methods have been simplified using
numerical methods for easy computation of seepage function by Swamee et al [8].
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Fig. (2). Variation in seepage loss [g¢/(k.yn)] with ratio of water depth / bed width for different
side slope m.

Total Water Loss
Adding (1) and (2) the total water loss qw (m?/s) was expressed as:

q.=ky,.F+ET 3)

Using Swamee et al [8] equations for F, Eq. (3) for trapezoidal section [See Fig. 1]
was reduced to
106 1.3+0.6 m
= il — ,0.462m : : n:n 1+0.6m
({ mT—T . 0.77+0.462 p [[13+06m (4)

q, k_ynD 4 } + {Zm}' ) 13:06m T ‘\]EH | + E.[b+ 2m.yn]

where m= side slope; b = bed width of the section.
Equation 4 is reduced to the following equation
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3. Problem Constrain (Flow Function)
Constraints are the restrictions posed on the values of selected variables. For the
present optimization problem, flow rate Q is required to be equal the value given by
Manning's formula [16], that is

Q:Mrj—] R2/3.S;/2.A %

where Q = canal discharge (m%/s); A = flow area (m?); R = hydraulic radius (m)
defined as the ratio of the flow area to the flow perimeter P (m) (i.e., R=A/P) ; Sp =
longitudinal channel bed slope; v = a constant (1.00 for SI units and 1.486 for U.S.
Customary units) and n = Manning's roughness coefficient.

Bottom width of the cross section b and the side-slope ratio m need to equal
or exceed zero (b = 0 yields a triangular cross section shape, and m = 0 produces a
rectangular cross section shape). See fig. (1).

Average canal velocities V = Q/A may also be of concern. If water travels
too slowly, sediment carried by the flow can deposit and lead to higher water-
surface elevations and reduced capacities. On the other hand, water moving at high
speeds can erode beds and banks. For water carrying no silt load, minimum velocity
has little significance except for its effect on plant growth. In general, minimum
average barrel velocities of 0.6 to 0.9 m/s (2 to 3 feet/sec) are suitable when the
percentages of silt-sized material present in channel flows are small, and average
velocities greater than 0.8 m/s (2.5 feet/sec) will prevent growth of vegetation that
might decrease flow-carrying capacities of channels [16,21]. Maximum allowable
velocities that prevent erosion are usually based on the types of channel lining.
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Limitations might also be imposed because of large super-elevation in bends and
high degrees of wave action. Maximum permissible velocities for various canals are
suggested by Etcheverry [22], Fortier and Scobey [23], Lane [24], and Swamee et al
[9]. Side slopes may also be restricted by site conditions or construction-related
factors.

4. Optimization Procedure
To get the minimum water loss design of canal cross section, the overall water loss
per unit length, qw, (equation 5) and the flow equation (the main constrain) should be

minimized. The flow equation (1) ( Y 0, m) , can be written as:

o(y, b,my=Apr— QN _psepan_ QN _g4 o

Vs, UNES
Q.n

VS,
Applying Lagrange's method of undetermined multipliers with { as the
undetermined multipliers, the following relations are obtained:

%H;@:O

Where = section factor.

9
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Eliminating ¢ between equations 9,10, and 11 one gets
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Case of constant side slope m
Practically, for a given canal bed material and according to the internal angle

% _ a0, g,

of repose, the canal side slope, m, is decided. In this case
om  om
and only equation 14 is held true.
Substituting from equations 16 and 17 into equation 14 yields the following

eqhatlon WhICh is necessary, for mlrﬁmlzatlon process.
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Using equations 20 and 8 the optimal canal cross section for minimum water loss for
a specified value of m, can obtained. Once, the value of b and y, are calculated, the
corresponding value of flow velocity, V, is determined, which must satisfy the
allowable velocity.

Velocity-constrains

The minimum permissible velocity, Vmin 0Or the non-silting velocity is the
lowest velocity that will not initiate sedimentation and will not induce the growth of
vegetation. Sedimentation and growth of vegetation decrease the carrying capacity
and increase the maintenance cost of the canal. In general, an average velocity of 0.6
to 0.9 m/s will prevent sedimentation when the silt load of the flow is low and a
velocity of 0.75 m/s is usually sufficient to prevent the growth of vegetation [16].
Hence, the minimum permissible velocity can be assumed in the range from 0.75 to
0.9 m/s.

The higher velocities are desired in rigid boundary canals to reduce costs.
However, high velocities may cause scour and erosion of the boundaries. In rigid
boundary canals the maximum permissible velocity or the limiting velocity, Vmax
(m/s) that will not cause erosion depends on the channel surface material. Table 1
lists the limiting velocities for different type of channel surface materials [11,25].

Table (1). Limiting Velocities

Lining Material Limiting Velocity (m/s)
Boulder 1.0-1.5
Brunt Clay Tile 15-2.0
Concrete Tile 2.0-2.5
Concrete 2.5-3.0

The flow velocity, V, must be checked with the maximum, and the minimum
velocity limits.
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If such flow velocity, V, is greater than Vmax, or less than Vmin, the optimal values of
b* and y* will not equal those given by solving Equation 8 and 20. The proper
dimensions of the channel may be obtained by solving Manning's equation along
with one of the following two equations.
Case 1: V<Vmin

A(y,b) =Q/Vmin (21)
Case 2: V>Vmax

A(Y,b) =Q/Vmax (22)

5. Computer Program and Design Charts
Solving Equations 8 and 20 for optimum bed width and optimum water depth, y*,
requires iteration. A FORTRAN computer program, using random search method is
developed to solve the above mentioned equations.
Reasonable upper and lower limit value of both, bed width, b, and water
depth, vyn, are essential to quick the calculation. The following equations give the
maximum expected values of water depth yT?é’ and bed width bmax.

1+ m) Qn D0375

ymax = 20'25_ m5/8 % (23)

(]_+m2)1/8] Qn 10.375

The results are plotted on design chart forms (flgures 3,4,5,6) to assist the
designer to get out the optimal dimension of the canal for known values of Q, n, m,
So, and E/K.

The graphical correlation method [25,26] with the aid of computer facilities,
is used to construct alternative and compact design charts, figures 8a, 8b, 8c , that
would be used to find the optimal dimension of the canal for known values of Q, n,
m, So, and E/K.

f’:’\V

brax = 245 o5 (24)

6. Procedure to Use the Design Charts
To find optimal bed width b of the desired canal, fig. (8a), the bottom axis is entered
with the desired K/E, then vertically up to the desired m, then horizontally to the
desired section factor SF, then vertically up to optimal bed width b.
To find optimal water depth yn of the desired canal, fig. (8b), the bottom axis
is entered with the desired K/E, then vertically up to the desired m, then horizontally
to the desired section factor SF, then vertically up to optimal water depth yn.
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To find minimum water loss quw/E of the desired canal, fig. (8c), the bottom
axis is entered with the desired K/E, then vertically up to the desired m, then
horizontally to the desired section factor SF, then vertically up to water loss quw/E.

7. Discussions
In figures (3a, 4a, 5a, 6a) variation of optimal bed width b with section factor
[Q.n/y.So”.5] and side slope m for K/E=0.50, 1.00, 2.00, and 5.00 were plotted.

In figures (3b, 4b, 5b, 6b) variation of optimal water depth y, with section
factor [Q.n/y.So".5] and side slope m for K/E=0.50, 1.00, 2.00, and 5.00 were
plotted.

In figures (3c, 4c, 5c, 6¢) variation of water loss quw/E with section factor
[Q.n/y.So”.5] and side slope m for K/E=0.50, 1.00, 2.00, and 5.00 were plotted.

Figures (3a, 4a, 5a, 6a) show that bed width of the optimal section decrease
with increase in side slope m for all values of K/E. For m > 1.0 the optimum shifts to
b = 0 (triangular section).

A perusal of Figures (3c, 4c, 5c, 6¢) for water loss reveals that water 10ss qQuw
increase with increase in side slope m for all values of m>0.5.

The optimal trapezoidal section permits less water loss than the optimal
rectangular section for K/E > 1.0.

Design examples
Example 1
Design a minimum water loss concrete lined rectangular canal section for
carrying a discharge of 6.25m%s on a longitudinal slope of 0.0004, Manning's
coefficient n= 0.016., evaporation rate, E = 3.0m/year, conductivity of underlain
soil, K= 1.5m/year. It is required also to calculate total water loss from the canal if
total length of the canal is 12 km.

Design steps
section Q.n  6.25(0.016)
ection factor. = = =
v./S,  +/0.0004

From chart (3 a) b*=2.45m
From chart (3 b) y*=2.35m
From chart (3 ¢) quw/E= 7.74 m?/year
Then minimum water loss is 7.74*3*12000 =278640 m3/year
Example 2
Design a trapezoidal canal section for the same data above, and side slope m

=0.5



84 Yousry Mahmoud Ghazaw

Design steps

e Qn  6.25(0.016)
ection factor. = = =
v.S,  +0.0004

From chart (3 a) b*=1.5m
From chart (3 b) y*=2.15m
From chart (3 ¢) quw/E= 8.4 m?/year
Then minimum water loss is 8.4*3*12000 =302400 m3/year
Sensitivity of optimal dimension

For b ranging from 0.5 m to 7 m and m ranging from 0 to 2.0, the normal
water depths were obtained using Manning's equation. Furthermore, water losses
were calculated by (3). Figure. (7) shows the variation of qw with b and m for section
factor [Q.n/y.So".5] = 5.0 and K/E= 0.50. It can be seen that the water loss from a
rectangular section with bed width of 2.45 m is the global minimum. Furthermore,
the optimum is less sensitive to the increase in bed width and more sensitive to
increase in side slope. This trend of sensitivity continues for 0 <m < 1.0. For m >
1.0 the optimum shifts to b = 0O (triangular section). However, as seen in Fig. (7) the
optimum for a rectangular section (m = 0) is highly sensitive to a decrease in bed
width.

Error in optimal bed width b calculation in the range + 10% will result only
in an increase in water loss by a value less than 0.80 %, this means that the design
charts can be used easily and safely to get the optimal value of b. The value of b can
then rounded off.

8. Conclusions

Using Lagrange's method of undetermined multipliers, the optimal dimensions of
canal cross section for minimum water loss have been obtained. Design charts,
based on the obtained results, in terms of canal geometry have been given to
facilitate design of the minimum water loss canals. Charts based on the optimal
dimension, are developed to calculate the minimum water loss from the designed
canal. The results show that, Water loss from a triangular canal is minimum for m >
1.5 for all cases of K/E and section factor [Q.n/y.So”.5]. Also the results show that
as K/E increase, the bed width is increase. The design examples have demonstrated
the simplicity of the method. The sensitivity analysis for the rectangular and
trapezoidal canal section design has revealed that the optimum is less sensitive to the
increase in bed width and more sensitive otherwise.

The proposed method can be applied to other complicated canal cross
sections that can not be solved by traditional method of variation.
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Fig. (3a). Variation of Bed width B with section factor [Q.n/y.So”.5] and Side slope m for K/E=0.50.
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Fig. (6a). Variation of Bed width B with section factor [Q.n/y.So”.5] and Side slope m for K/E=5.0.
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