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Abstract. Seepage and evaporation are the most serious forms of water losses in an irrigation canal 

network. Seepage loss depends on the channel geometry, whereas evaporation loss is proportional to the 

area of the free surface. In this investigation, a methodology has been devised which describes the  
optimal canal dimensions to convey a particular discharge. The objective nonlinear water loss function, 

for the canal, which comprises seepage and evaporation losses, is developed. Two constrains, minimum 

permissible velocity as a limit for sedimentation and maximum permissible velocity as a limit for erosion 
of canal, have been taken into consideration in the canal design procedure. Using Lagrange's method of 

undetermined multipliers, the optimal canal dimensions are obtained which give the least water loss. 

Using a random search method, a simple computer program was developed to carry out design  
calculation and provide the optimal canal dimensions. A set of design charts has been prepared by 

plotting the results. The proposed charts facilitate easy design of the optimal canal dimensions 

guarantying minimum water loss and computation of water loss from the canal section without going 
through the conventional and cumbersome trial and error method. A design example with sensitivity 

analysis has been included to demonstrate the simplicity and practicability of the proposed method. 
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List of Symbols 

A flow area [m2]; 
b bed width of canal [m]; 

E evaporation discharge per unit free surface area [m/s]; 
Fs seepage function [dimensionless]; 
k coefficient of permeability [m/s]; 

m side slope [dimensionless]; 
n Manning’s roughness coefficient [dimensionless]; 
Q discharge [m3/s]; 
qe evaporation loss per unit length of canal [m2/s]; 
qs seepage loss per unit length of canal [m2/s]; 
qw total water loss per unit length of canal [m2/s]; 
R hydraulic radius [m]; 
So bed slope [dimensionless]; 
T width of free surface [m]; 

V average velocity [m/s]; 
VL limiting velocity [m/s]; 
yn normal depth [m]; 
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1. Introduction 

The trapezoidal section is the most common and practical canal cross section, which 

is used to convey water for irrigation, industrial and domestic uses around the world. 

An irrigation canal may be a rigid or mobile boundary canal. The loss of water due 

to seepage and evaporation from irrigation canals constitutes a substantial 

percentage of the usable water. According to the Bureau of Indian Standards, [1] the 

loss of water by the seepage from unlined canals in India generally varies from 0.3 

to 7.0 m3/s per 106 m2 of wetted surface. The seepage loss from canals is governed 

by hydraulic conductivity of the subsoil, canal geometry, and location of water table 

relative to the canal. 

Canals are lined to control the seepage. But canal lining deteriorates with 

time and hence, significant seepage losses continue to occur from a lined canal [2]. 

Therefore, seepage loss must be considered in the design of a canal section. Several 

investigators [3,4,5,6,7,8,9,10] presented canal design methods considering seepage 

loss. 

A transmission canal conveys water from the source to a distribution canal. 

Many times the area to be irrigated lies very far from the source, and hence requires 

long transmission canals. For example, the Nobaria canal in Egypt has the 

transmission canal length of 190 km carrying a discharge about 160 m3/s. 

Water lost by seepage cannot be recovered without the use of costly pumping 

plant. In addition excessive seepage losses can cause low lying areas of land to 

become unworkable. As the water table rises, water logging and soil Stalinization 

can occur, necessitating the installation of elaborate and costly drainage systems. 

Furthermore the cultivable area is reduced, resulting in a loss of potential crop 

production. 

By the time the water reaches the field, more than half of the water supplied 

at the head of the canal is lost in seepage and evaporation [11]. Seepage loss is the 

major and the most important part of the total water loss [8]. The other part i.e. 

evaporation loss is important particularly in water scarce areas. Considerable part of 

flow may be lost from a network of canals by the way of evaporation in high 

evaporating conditions. This needs special consideration for a long channel carrying 

small discharge in arid regions. Thus, care must be taken in the design of such  

canals to account for evaporative losses along with seepage loss. 

Studies of canal design for minimum water loss have been carried out by 

several investigators [12-15]. These studies besides their difficulties to be applied by 

the practicing engineer, no attention has been made to consider the side slope 

constrain. 

In the present study using explicit equations for seepage loss [8], the 

evaporation equation, and Manning's equation for open channel flow [16], minimum 

water loss sections have been obtained by applying Lagrange's method of 
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undetermined multipliers [17] for triangular, rectangular, and trapezoidal canal 

sections and presented in easy use simple design charts. 

 
2. Objective Function 

The sum of seepage and evaporation losses is considered as an objective function. 

The aim is to minimize the objective function. 

Water losses: 

Water is lost from canals by seepage through the sides and bottom and by 

evaporation from the water surface. Seepage rates from unlined canals can be 

extremely large, and even lined channels never seem to eliminate water loss through 

sides and bottoms. Measured seepage rates from lined canals vary widely [18]. The 

best concrete-lined channels may lose about 8 mm/day of water through wetted 

boundary surfaces. 
Evaporation Loss 

The Evaporation loss from flowing canals, can be expressed as 

qe = E.T (1) 

where qe = evaporation discharge per unit length of canal (m2/s); E = evaporation 

discharge per unit free surface area (m/s); and T = width of free surface (m). See fig. 

(1). 
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Fig. (1). Canal Sections: (a) Trapezoidal Section, (b) Rectangular section, (c) Triangular Section. 

 

Seepage Loss 

Providing perfect lining can prevent seepage loss from canals but cracks in 

lining develop due to several reasons and performance of canal lining deteriorates 

with time. An examination of canals [2] indicated that even with the greatest care 
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the lining does not remain perfect. A well maintained canal with 99% perfect lining 

reduces seepage about 30-40% only [2]. Thus significant seepage losses occur from 

a canal even if it is lined. The seepage loss from canals is governed by hydraulic 

conductivity of the subsoil, canal geometry, and potential difference between the 

canal and the aquifer underneath which in turn depends on the initial and boundary 

conditions. Seepage losses are also influenced by clogging of the canal surfaces 

depending on the suspended sediment content of the water and on the grain size 

distribution of the suspended sediment particles. The clogging process can decrease 

the seepage discharge both through bottom and slopes. Thus the seepage loss can 

change within time and under certain conditions it can diminish. Therefore, the 

seepage loss can be higher at the beginning of the canal operation and can be lower 

after a few years of operation. 

The seepage loss from a canal in an unconfined flow condition is finite and 

maximum when the potential difference is very large e.g. when the water table lies 

at very large depth. The steady seepage loss from an unlined or a cracked lined canal 

in a homogeneous and isotropic porous media, when water table is at very large 

depth, can be expressed as [8]. 

qs = k.yn .Fs (2) 

where qs = seepage discharge per unit length of canal (m2/s); k = coefficient of 

permeability (m); yn = normal depth of flow in the canal (m); and Fs = seepage 

function (dimensionless), which is a function of channel geometry. Graphical 

representation of equation (1) is plotted in fig. (2). 

The seepage function can be estimated for different sets of specific  

conditions for a known canal dimensions [3,19,20]. The analytical form of these 

solutions, which contain improper integrals and unknown implicit state variables, 

are not convenient in estimating seepage from the existing canals and in designing 

canals considering seepage loss. These methods have been simplified using 

numerical methods for easy computation of seepage function by Swamee et al [8]. 
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Fig. (2). Variation in seepage loss [qs/(k.yn)] with ratio of water depth / bed width for different 

side slope m. 
 

Total Water Loss 
Adding (1) and (2) the total water loss qw (m2/s) was expressed as: 

qw = k.yn .Fs + E.T 

 

 
 

(3) 

Using Swamee et al [8] equations for Fs, Eq. (3) for trapezoidal section [See Fig. 1] 

was reduced to 
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where m= side slope; b = bed width of the section. 
Equation 4 is reduced to the following equation 
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3. Problem Constrain (Flow Function) 

Constraints are the restrictions posed on the values of selected variables. For the 

present optimization problem, flow rate Q is required to be equal the value given by 

Manning's formula [16], that is 

Q = 


 
n 

R 2 / 3 .S 1 / 2 .A  
(7) 

where Q = canal discharge (m3/s); A = flow area (m2); R = hydraulic radius (m) 

defined as the ratio of the flow area to the flow perimeter P (m) ( i.e., R=A/P) ; So = 

longitudinal channel bed slope;  = a constant (1.00 for SI units and 1.486 for U.S. 

Customary units) and n = Manning's roughness coefficient. 

Bottom width of the cross section b and the side-slope ratio m need to equal 

or exceed zero (b = 0 yields a triangular cross section shape, and m = 0 produces a 

rectangular cross section shape). See fig. (1). 

Average canal velocities V = Q/A may also be of concern. If water travels  

too slowly, sediment carried by the flow can deposit and lead to higher water- 

surface elevations and reduced capacities. On the other hand, water moving at high 

speeds can erode beds and banks. For water carrying no silt load, minimum velocity 

has little significance except for its effect on plant growth. In general, minimum 

average barrel velocities of 0.6 to 0.9 m/s (2 to 3 feet/sec) are suitable when the 

percentages of silt-sized material present in channel flows are small, and average 

velocities greater than 0.8 m/s (2.5 feet/sec) will prevent growth of vegetation that 

might decrease flow-carrying capacities of channels [16,21]. Maximum allowable 

velocities that prevent erosion are usually based on the types of channel lining. 
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Limitations might also be imposed because of large super-elevation in bends and 

high degrees of wave action. Maximum permissible velocities for various canals are 

suggested by Etcheverry [22], Fortier and Scobey [23], Lane [24], and Swamee et al 

[9]. Side slopes may also be restricted by site conditions or construction-related 

factors. 

 
4. Optimization Procedure 

To get the minimum water loss design of canal cross section, the overall water loss 
per unit length, qw, (equation 5) and the flow equation (the main constrain) should be 

minimized. The flow equation  ( y ,b, m) , can be written as: 
 

( y , b, m) = A
 
.P

 
− 

Q.n 

= A5 / 3 .P− 2 / 3 − = 0.0 
 

(8) 

Where = section factor. 

 

Applying Lagrange's method of undetermined multipliers with  as the 
undetermined multipliers, the following relations are obtained: 
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Eliminating  between equations 9,10, and 11 one gets 

qw .
  

= 
qw . 

 
  

 
(12) 

b yn yn     b 

qw . 
 

= 
qw . 

 
  

 
(13) 

b m m  b 

Q.n 

 S 
o 

Q.n 

 S 
o 



80 Yousry Mahmoud Ghazaw 
 

 

y y  

   A  

  

 

 

 

Equation 8 is used to determine the partial derivatives 
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. Using 

b 
equations 12 and 13 the following two important equations, which are necessary for 

the minimization process, can be obtained: 
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Case of constant side slope m 

Practically, for a given canal bed material and according to the internal angle 

of repose, the canal side slope, m, is decided. In this case 

and only equation 14 is held true. 
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Substituting from equations 16 and 17 into equation 14 yields the following 

equation, which is necessary for minimization process. 
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Using equations 20 and 8 the optimal canal cross section for minimum water loss for 

a specified value of m, can obtained. Once, the value of b and yn are calculated, the 

corresponding value of flow velocity, V, is determined, which must satisfy the 

allowable velocity. 

Velocity-constrains 

The minimum permissible velocity, Vmin or the non-silting velocity is the 

lowest velocity that will not initiate sedimentation and will not induce the growth of 

vegetation. Sedimentation and growth of vegetation decrease the carrying capacity 

and increase the maintenance cost of the canal. In general, an average velocity of 0.6 

to 0.9 m/s will prevent sedimentation when the silt load of the flow is low and a 

velocity of 0.75 m/s is usually sufficient to prevent the growth of vegetation [16]. 

Hence, the minimum permissible velocity can be assumed in the range from 0.75 to 

0.9 m/s. 

The higher velocities are desired in rigid boundary canals to reduce costs. 

However, high velocities may cause scour and erosion of the boundaries. In rigid 

boundary canals the maximum permissible velocity or the limiting velocity, Vmax 

(m/s) that will not cause erosion depends on the channel surface material. Table 1 

lists the limiting velocities for different type of channel surface materials [11,25]. 

Table (1). Limiting Velocities 

Lining Material Limiting Velocity (m/s) 

Boulder 1.0-1.5 
Brunt Clay Tile 1.5- 2.0 

Concrete Tile 2.0-2.5 

Concrete 2.5-3.0 

The flow velocity, V, must be checked with the maximum, and the minimum 

velocity limits. 

1+ m
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If such flow velocity, V, is greater than Vmax, or less than Vmin, the optimal values of 

b* and y* will not equal those given by solving Equation 8 and 20. The proper 

dimensions of the channel may be obtained by solving Manning's equation along 

with one of the following two equations. 

Case 1: V<Vmin 

 

Case 2: V>Vmax 

A(y,b) =Q/Vmin ( 21) 

 

A(y,b) =Q/Vmax ( 22 ) 
 

5. Computer Program and Design Charts 

Solving Equations 8 and 20 for optimum bed width and optimum water depth, y*, 

requires iteration. A FORTRAN computer program, using random search method is 

developed to solve the above mentioned equations. 

Reasonable upper and lower limit value of both, bed width, b, and water 

depth, yn, are essential to quick the calculation. The following equations give the 

maximum expected values of water depth ymax, and bed width bmax. 

(1 + m
2 )1 / 8     Q.n 

 
 

0.375 

y = 20.25.    (23) 
max 5 / 8   

  
(1 + m

2 )1 / 8     Q.n 
 

 

0.375 

b = 21.25.    (24) 
max 5 / 8   

  
The results are plotted on design chart forms (figures 3,4,5,6) to assist the 

designer to get out the optimal dimension of the canal for known values of Q, n, m, 

So, and E/K. 

The graphical correlation method [25,26] with the aid of computer facilities, 

is used to construct alternative and compact design charts, figures 8a, 8b, 8c , that 

would be used to find the optimal dimension of the canal for known values of Q, n, 

m, So, and E/K. 

 
6. Procedure to Use the Design Charts 

To find optimal bed width b of the desired canal, fig. (8a), the bottom axis is entered 

with the desired K/E, then vertically up to the desired m, then horizontally to the 

desired section factor SF, then vertically up to optimal bed width b. 

To find optimal water depth yn of the desired canal, fig. (8b), the bottom axis 

is entered with the desired K/E, then vertically up to the desired m, then horizontally 

to the desired section factor SF, then vertically up to optimal water depth yn. 

 

 

m 

m 
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To find minimum water loss qw/E of the desired canal, fig. (8c), the bottom 

axis is entered with the desired K/E, then vertically up to the desired m, then 

horizontally to the desired section factor SF, then vertically up to water loss qw/E. 

 
7. Discussions 

In figures (3a, 4a, 5a, 6a) variation of optimal bed width b with section factor 

[Q.n/.So^.5] and side slope m for K/E=0.50, 1.00, 2.00, and 5.00 were plotted. 

In figures (3b, 4b, 5b, 6b) variation of optimal water depth yn with section 

factor [Q.n/.So^.5] and side slope m for K/E=0.50, 1.00, 2.00, and 5.00 were 

plotted. 

In figures (3c, 4c, 5c, 6c) variation of water loss qw/E with section factor 

[Q.n/.So^.5] and side slope m for K/E=0.50, 1.00, 2.00, and 5.00 were plotted. 

Figures (3a, 4a, 5a, 6a) show that bed width of the optimal section decrease 

with increase in side slope m for all values of K/E. For m  1.0 the optimum shifts to 

b = 0 (triangular section). 

A perusal of Figures (3c, 4c, 5c, 6c) for water loss reveals that water loss qw 

increase with increase in side slope m for all values of m0.5. 

The optimal trapezoidal section permits less water loss than the optimal 

rectangular section for K/E  1.0. 

Design examples 

Example 1 

Design a minimum water loss concrete lined rectangular canal section for 

carrying a discharge of 6.25m3/s on a longitudinal slope of 0.0004, Manning's 

coefficient n= 0.016., evaporation rate, E = 3.0m/year, conductivity of underlain 

soil, K= 1.5m/year. It is required also to calculate total water loss from the canal if 

total length of the canal is 12 km. 

Design steps 

 
Section factor. = 

Q.n 6.25(0.016) 
= = 5 

 

From chart (3 a) b*= 2.45 m 

From chart (3 b) y*= 2.35 m 

From chart (3 c) qw/E= 7.74 m2/year 

Then minimum water loss is 7.74*3*12000 =278640 m3/year 

Example 2 

Design a trapezoidal canal section for the same data above, and side slope m 

=0.5 

 S 
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Design steps 

 
Section factor. = 

 

Q.n 

 
6.25(0.016) 

= = 5 

 

From chart (3 a) b*= 1.5m 

From chart (3 b) y*= 2.15m 

From chart (3 c) qw/E= 8.4 m2/year 

Then minimum water loss is 8.4*3*12000 =302400 m3/year 

Sensitivity of optimal dimension 

For b ranging from 0.5 m to 7 m and m ranging from 0 to 2.0, the normal 

water depths were obtained using Manning's equation. Furthermore, water losses 

were calculated by (3). Figure. (7) shows the variation of qw with b and m for section 

factor [Q.n/.So^.5] = 5.0 and K/E= 0.50. It can be seen that the water loss from a 

rectangular section with bed width of 2.45 m is the global minimum. Furthermore, 

the optimum is less sensitive to the increase in bed width and more sensitive to 

increase in side slope. This trend of sensitivity continues for 0 < m < 1.0. For m  

1.0 the optimum shifts to b = 0 (triangular section). However, as seen in Fig. (7) the 

optimum for a rectangular section (m = 0) is highly sensitive to a decrease in bed 

width. 

Error in optimal bed width b calculation in the range  10% will result only 

in an increase in water loss by a value less than 0.80 %, this means that the design 

charts can be used easily and safely to get the optimal value of b. The value of b can 

then rounded off. 

 
8. Conclusions 

Using Lagrange's method of undetermined multipliers, the optimal dimensions of 

canal cross section for minimum water loss have been obtained. Design charts, 

based on the obtained results, in terms of canal geometry have been given to 

facilitate design of the minimum water loss canals. Charts based on the optimal 

dimension, are developed to calculate the minimum water loss from the designed 

canal. The results show that, Water loss from a triangular canal is minimum for m  

1.5 for all cases of K/E and section factor [Q.n/.So^.5]. Also the results show that 

as K/E increase, the bed width is increase. The design examples have demonstrated 

the simplicity of the method. The sensitivity analysis for the rectangular and 

trapezoidal canal section design has revealed that the optimum is less sensitive to the 

increase in bed width and more sensitive otherwise. 

The proposed method can be applied to other complicated canal cross 

sections that can not be solved by traditional method of variation. 
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Fig. (3a). Variation of Bed width B with section factor [Q.n/.So^.5] and Side slope m for K/E=0.50. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (3b). Variation of water depth yn with section factor [Q.n/.So^.5] and Side slope m for 

K/E=0.50. 
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Fig. (3c). Variation of water loss qw with section factor [Q.n/.So^.5] and Side slope m for 

K/E=0.50. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. (4a). Variation of Bed width B with section factor [Q.n/.So^.5] and Side slope m for K/E=1.00. 
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Fig. (4b). Variation of water depth yn with section factor [Q.n/.So^.5] and Side slope m for 

K/E=1.00. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. (4c). Variation of water loss qw with section factor [Q.n/.So^.5] and Side slope m for 

K/E=1.00. 
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Fig. (5a). Variation of Bed width b with section factor [Q.n/.So^.5] and Side slope m for K/E=2.00. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5b). Variation of water depth yn with section factor [Q.n/.So^.5] and Side slope m for 

K/E=2.0. 
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Fig. (5c). Variation of water loss qw with section factor [Q.n/.So^.5] and Side slope m for K/E=2.0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (6a). Variation of Bed width B with section factor [Q.n/.So^.5] and Side slope m for K/E=5.0. 
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Fig. (6b). Variation of water depth yn  with section factor [Q.n/.So^.5] and Side slope m for 

K/E=5.0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (6c). Variation of water loss qw with section factor [Q.n/.So^.5] and Side slope m for K/E=5.0. 
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Fig. (7). Variation of water loss qw/k with bed width b and Side slope m for K/E=0.50 and 

section Factor [Q.n/.So^.5]=5.0. 
 

Fig. (8.a). Optimal bed width b as a function of K/E, side slope m, and Section Factor SF, 

[Q.n/.So^.5]. 
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water loss q w/E (in m or f) 
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Fig. (8.b). Optimal water depth yn as a function of K/E, side slope m, and Section Factor SF, 

[Q.n/.So^.5]. 
 

Fig. (8.c). Water loss qw/E as a function of K/E, side slope m, and Section Factor SF, [Q.n/.So^.5]. 
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