
 

 

 

 

 
Journal of Engineering and Computer Sciences 

Qassim University, Vol. 3, No. 2, pp. 119-146 (July 2010/Rajab 1431H) 

 

 

 

 
 

A Comparative Study Between Hi/H2/MOC LMI-based Iterative PID 

Controllers for Speed and Voltage Control of a Sample Power System 

 
 

Ahmed Bensenouci, SIEEE 

 
Engineering College, Qassim University, KSA 

bensenouci@ieee.org 

 

(Received 5/1/2010, accepted for publication 9/3/2010) 

 
Abstract. This paper presents a comparative study between three Linear Matrix Inequality (LMI)-based 

iterative multivariable Proportional-Integral-Derivative (PID) controllers; PID design using H-norm, 

named Hi, PID design using H2-norm, named H2, of the system transfer function, PID design with 

Maximum Output Control (MOC), named Max, and the classical LMI-based robust output feedback 

controller using H-norm, named ROB. Multivariable PID is considered here because of its wide use in 

the industry, simple structure and easy implementation. It is also preferred in plants of higher order that 
cannot be reduced and thus require a controller of higher order such as is the case for the classical robust 

H output feedback controller whose order is the same as that of the plant. LMI technique is selected 

because it allows easy inclusion of divers system constraint requirements that should be fulfilled by the 
controller, and thus make its design very efficient. The duty of each of the controllers is to drive a single- 

generator connected to a large power system via a transformer and a transmission line. The generator is 

equipped with its speed/power (governor) and voltage (exciter) control-loops that are lumped in one 
block. The errors in the terminal voltage and in the output active power, with respect to their respective 

references, represent the controller inputs and the generator-exciter voltage and governor-valve position 

represent the controller outputs. A comparative study is carried out using the named controllers (Hi, H2, 
Max, ROB). Divers tests are applied, namely, step-change and tracking in the references of the controlled 

variables, and variation in some plant parameters, to demonstrate the controllers effectiveness. 

Encouraging results are obtained that motivate for further investigations. 

 
Keywords: Linear matrix inequality, power system, robust output feedback control, H∞-control with PID, 

H2-control with PID, Maximum output with PID. 
 

List of Symbols 

 
vd, q stator voltage in d-axis and q-axis circuit 

Vt terminal voltage 
ψfd field flux linkage 
xad stator-rotor mutual reactance 
xfd self reactance of filed winding 
Vfd field voltage 
rfd field resistance 
e busbar voltage resistance 
Ue exciter input 

 rotor angle 

Te/Tm electrical / mechanical torque 

Ps steam power 
H inertia constant 

 angular frequency of rotor 

 
 angular frequency of the infinite busbar 

Kd mechanical damping torque coefficient 

Td damping torque coefficient due to 

damper windings 

Pt real power output at the generator 

terminals 
e exciter time constant 
g governor valve time constant 
b turbine time constant 
Ug governor input 
Gv governor valve position 
Kv valve constant 
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1. Introduction 

In a power system, the regulators of the synchronous machines determine power 

system voltage/frequency profile. Conventional regulators [1-3] such as IEEE types 

are characterized by low frequency oscillations and slow response. Other control 

signals are usually added to improve the performance but at the expense of a more 

complicated system. 

Conventional Proportional-Integral-Derivative (PID) controller is widely 

used in the industry owing to its simple structure, easy implementation, and found to 

be adequate for most plants. However, it is not robust to disturbances in the 

controlled variables and system parameters change [4-6]. Variable Structure Control 

(VSC) technique represents a robust control technique but it has a main drawback; 

the chattering (higher switching). Because of the limitation of the physical actuators, 

it is impossible to achieve the necessary higher switching. Besides, the chattering 

appears in the control input, and makes such controller not attractive  unless 

remedies are applied, but at the expense of lowering the controller robustness [7-10]. 

Optimal control theory [4,11-12] was also investigated and applied in industrial 

processes. State-feedback control is attractive but requires all states to be measurable 

that is usually not the case unless observers are used that add to the complexity of 

the overall system. This burden is reduced by using output feedback control instead. 

The later requires only measurable system outputs to be used and thus made more 

attractive in industrial control engineering area. Thus, efficient controllers are 

desirable to improve the power system performance through the control of the 

generator voltage and speed, and to overcome limitations in stability boundaries 

caused by the use of larger generator size and longer transmission lines. Modern 

control strategies involving intelligent techniques such as fuzzy logic control and 

neural networks, represent attractive approaches but have also limitations [9,13-14]. 

Recently, Linear Matrix Inequality (LMI) technique [18-20] has emerged as 

powerful design tools. Many control problems and design specifications have LMI 

formulations. This is especially true for Lyapunov-based analysis and design, but 

also for optimal LQG control (H2-control), robust H-control, etc. The main strength 

of LMI formulations is its ability to combine various design constraints and/or 

objectives in a numerically tractable manner. The LMI theory offers powerful tools 

to attack different objectives such as: 

• H performance (for tracking, disturbance rejection, or robustness aspects). 

• H2 performance (for LQG aspects). 

• Robust pole placement specifications to ensure fast and well-damped transient 

responses. 

• Maximum Output Feedback (MOC) control. 

In robust control, it is customary to formulate the design specifications as 

abstract disturbance rejection objectives. The performance of a control system is 

then measured in terms of the closed-loop RMS gain from disturbances to outputs. 

While some tracking and robustness are best captured by an H criterion, noise 

insensitivity is more naturally expressed in LQG terms (H2-performance), and 
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transient behaviors are more easily tuned in terms of the system closed-loop 

damping. Classical H-based robust output-feedback controller is widely preferred 

when the minimization of the effect of the disturbance on selected outputs is sought. 

However, due to its complexity in implementation and its high order, it is not highly 

desirable [8,9]. 

This paper presents a comparative study between three iterative LMI-based 

iterative multivariable PID controllers: PID using H-norm of the system transfer 

function, abbreviated Hi; robust PID using H2-norm of the same transfer function, 

abbreviated H2; PID with Maximum Output Control (MOC), abbreviated Max, and 

finally the classical LMI-based robust H output feedback controller, abbreviated 

ROB [21-23]. The main task of each of the controllers is to drive a single-generator 

connected to a large power system via a transformer and a transmission line [11]. 

The generator is equipped with its speed/power (governor) and voltage (exciter) 

control-loops. To show the effectiveness of each controller and to carry a 

comparative study, divers tests were applied, namely, step-change and tracking in 

the references of the controlled variables, and variation in some plant parameters. 

 
2. System Modeling 

Figure. (1) shows the block diagram of the sample controlled power system that 

comprises a steam turbine driving a synchronous generator which is connected to an 

infinite bus via a step-up transformer and a transmission line. The output real power 

Pt and terminal voltage Vt at the generator terminals are measured and fed to the 

controller. The outputs of the controller (system control inputs) are fed into the 

generator-exciter and governor-valve. 

In the simulation studies described here, the nonlinear equations of the 

synchronous generator are represented by a third–order nonlinear model based on 

park's equations. The steam turbine, governor valve and exciter are each represented 

by a first order- model. The model equations are as follows [11]. The data are shown 

in the Appendix. 

x& 
 

= x2 
 

x&2 = (x6 − K1x3 sin x1 − K2 sin x1 cos x1 − (Kd  + Td )x2 
   0 

 
 

x  = 
 
 
x& = 
 
 

0rfd 

xad 

− x4 +
 

 e 
− x5 
 

 

2H 

x4 + K3x3 − K2 sin x1 cos x1 

1 
U

 

 e 
Kv 
 

 

 

 
(1) 

 & 
 5  
 

+ U g 
g 

x& 
= 

− x6 + 
x5 

  

 6  b  b
 

The output y1, y2 may be expressed in terms of these state variables by 

1 

e 

g 
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 y = P = K x sin x + K sin x cos x 
 1 t 1 3 1 2 1 1  
y = V = (v

2 
+ v

2 
)
1/ 2

 (2) 

 

where 

 2 t d q 

v
d  

= K
5 

sin x 

v
q
 = K x 

3 

1 
+ K cos x 

1 
(3) 

 

A linear Multi-Input Multi-output (MIMO) model of the generator system is 

required to design a controller for such system. It is derived from the system 

nonlinear model by linearizing the nonlinear equations (1)-(3) around a specific 

operating point. The linear state-space model (4) is derived next where the variables 

shown represent small displacements around the selected operating point. 

 
 

 
 

Fig. (1). Controlled sample power system. 

 

x& = Ax + Bu 
 
y = Cx + Du 

The matrices A, B, C and D have the form: 

 
(4) 
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K11  0 
K 0 

 

 

 

 

 

 
K12 
K 

0 
-1 

0
 

 e 

-1 
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D = 
0 0  
0   0 

 
Where 

x =  & 

 

 

 
 fd 

13 

 

 
E fd 

14    

 

Ps Tm T 
: state variables vector 

u = U e 

y = Pt 

U g T 
: control input vector 

Vt 
T 

: output measurement vector 
 

Pt   = K11 x1 + K12 x3 : output power 

Vt  = K13 x1  + K14 x3 : terminal voltage 

 
3. Robust H Output Feedback Controller 

Figure. (2) shows a modified representation of the output-feedback control block 

diagram. 

0 
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Kg  
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K(s):
ζ = AK ζ + BKe 

 

 

 

 

Fig. (2). Output feedback block diagram. 

Where P(s) represents the plant whereas K(s) represents the controller to be 

designed. Let 
 

 
Plant: 

x& = Ax + B1w + B2u 
 

P(s): z = Cz x + Dz1w + Dz2u 

 y = Cy x + Dy w 

 

 

 

(5) 
 

Controller: 
 & 
 
u = CK ζ + DK e 

 

(6) 

 

be the state-space realizations of the plant P(s) and the controller K(s), respectively, 

and let 
 

x&CL  = ACL xCL  + BCLw  (7) 

z = C xCL + DCLw 
 

be the corresponding closed-loop state-space equations with 

xCL = [x ]
T

 (8) 
z = e = y − w 

 

The design objectives for finding K(s) is to minimize the H-norm of the closed- 

loop transfer function G(s) from w to z, i.e., 

 

satisfies 

G(s)=CCL (s - ACL )
-1

BCL+DCL 

 
|| G(s) zw ||   

(9) 

CL 
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0 

 

T T 

 
 γ 

 

 

using LMI technique [12,15-17]. This can be fulfilled if and only if there exists a 

symmetric matrix X such that the following LMIs are satisfied 
 

 A X + XAT B XCT  
  CL CL CL 
 
 CL − I 

CL  
 

CL   0 
 
 CCLX 

 
 

X  0 

DCL 
−  2I  

 
 

 

(10) 
 

4. PID Design with H 

Consider the linear time-invariant state-space system given by 

 
x& = Ax + Bu 
 
y = Cx 

With the following PID controller 

 

 

 

(11) 

t dy 

 
 

Where 

u = F1 y + F2 ∫ ydt + F3 
dt

 (12) 

x state variables 

u control inputs 

y outputs 

A, B and C matrices with appropriate dimensions 

F1, F2, F3 matrices to be designed. 

Let 
z1 = x  t . (13) 

z2 = ∫ ydt 
 0 

Denote z = z1 z2 T . The variable z can be viewed as the state vector of a new 

system whose dynamics are governed by 

z& 
 = x& = Az1 + Bu  

(14) 

z&2  = y = Cz1 

Or, in compact form, 
 

  

z& = Az + Bu 

 

 

(15) 

where 

A = 
 A 0 

B = 
B  

    
C 0   0  

D 

1 
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1 3 1 3 

 

 

2 2 

 

Combining (11) and (13) yields 
 
 y = C 
t 

0z 

∫ ydt = 0 I z 
0 

(16) 

 dy 
= CAx + CBu = CA 

 dt 
0z + CBu 

 
Define 

Then, 

 
C1 = C 

 
0 , 

. 

C2 = 0 

 

yi = Ciz 

 
I  , 

 
(i = 1 − 3) 

 
C3 = CA 0 

If (I − F3CB) is invertible then from (12) and (16), one gets 

u = Fy 

 

(17) 

Where 

y = yT
 

T yT T 
C  = C 

T
 

T C T  T F = F1 F2 F3  

F1 = (I − F3CB) 
−1 

F1 F2 = (I − F3CB) 
−1 

F2 F3 = (I − F3CB)
−1

F3 

The problem of PID controller design reduces to that of Static Output Feedback 

(SOF) [21-22] controller design for the following system: 
z& = Az + Bu 
 y = Cz 

u = Fy 

Once F is found, the original PID gains can be recovered from 

F3 = F3 (I + CBF3 ) 
−1

 

F2 = (I − F3CB)F2 

F1 = (I − F3CB)F1 

(18) 

 

 

 
 

(19) 

 

The design problem of PID controllers under H∞ performance specification is 

handled by first considering the system (11) rewritten as (Fig. 3): 

y C 
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Fig. (3) Iterative PID block diagram. 

 
 

 

 

 
where 

x& = Ax + B1w + B2u 

P(s) :  ys = Csx 

 yr = Cr x + Du 

 

(20) 

x state variables 

u control inputs 

w disturbance/reference inputs 
ys sensed/measured outputs 

yr regulated/controlled outputs 

A, B1, B2, Cs, and Cr matrices with appropriate dimensions. 
 

The static output feedback H∞ control problem is to find a controller of the form 

u = F ys 

 
(21) 

such that the H∞-norm of the closed-loop transfer function from w to yr is stable and 

limited as follows: 

|| Gwyr 
||  (22) 

 

Algorithm 1, shown in Appendix 2, is used to solve for the dynamics of the newly 

obtained SOF control system: 
  

z& = Az + B1w + B2u  
y = Cs z  

 

 

 
using 

 
 

 yr = Cr z + Du 

u = Fys 

(23) 

 
 

A = A, 
 

 

B1 = B1, 

 
 

B2 = B2 , 

 
 

Cs = Cs , 

 
 

Cr = Cr , 
 

 

F = F 
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2 

2 

 

With 
 

 A 

A = 
C
 

 
0  

0  

 

B1 = 
B1  

 0  

 

B 2 = 
B2  

 0  

 

Cs = Cs 0 

 
Cr = Cr 0 

 
    

Thus, once the feedback matrices F = (F1, F2, F3) are obtained using Algorithm 1 as 

applied to system (23), the original PID gains 

from (19). 

F = (F1, F2 , F3 ) can be recovered 

5. PID Design with H2 

The design problem of PID controllers under H2 performance specification is 

investigated, first, by studying the static output feedback (SOF) case and then 

extending the result to the PID case. As before, consider the system: 

 
x& = Ax + Bu 

P(s) :  

 y = Cx 
(24) 

 

Assuming that A is stable then for the system closed-loop transfer function 

G(s) = C(sI − A)
−1

B + D 

the classical result within Lyapunov approach gives 

|| G ||
2 

= Trace(B
T

QB) 

where Q is a solution of the following Lyapunov equation: 

A
T

Q + QA + C
T

C = 0 

The dual form of H2 norm formulation is: 

|| G ||
2 

= Trace(CPC
T 

) 

where P is a solution of the following Lyapunov equation: 

 

(25) 

 

(26) 

 

(27) 

 

(28) 

 

AP + PA
T 

+ BB
T 

= 0 (29) 
 

The Static Output Feedback H2 control (SOFH2) problem is to find a control of the 

form 

u = Fys 

such that the closed-loop transfer function, from w to yr, is stable and 

(30) 

||Gwyr||2 <  (31) 

with  >0 and ||.||2 denotes the 2-norm of the system transfer matrix. 

The H2-performance index, for system (20) rewritten as 
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0     

 

x& = Ax + B1w + B2u P(s) 

:  ys = Csx 

 yr = Cr x 
 

can be achieved by a SOF controller if the matrix inequalities: 
trace(Cr PCt )   2 

 r T T T T  T T 
AP + PA 
 
P  0 

− PCs Cs P + (B2F + PCs )(B2 F + PCs ) + B1B1  O  

 
(32) 

have solutions for (P,F). 

 

An iterative LMI algorithm, Algorithm 2, for solving H2-SOF control is developed in 

[21] and shown in Appendix 3 where 
 

 

A = A, 

 
 

B1 = B1, 

 
 

B2 = B2 , 

 
 

Cs = Cs , 

 
 

Cr = Cr , 

 
 

F = F 
 

The PID design with H2 specifications converts to a SOF control for the dynamics of 

the newly obtained system: 

z& = Az + B1w + B2u 

 y = Csz 

 

 

 
Where 

 

 yr = Crz 

u = Fys 

 
 A 0 

A = 
C 

 

 s  

 

 

B1 = 
B1  

 0  

 

 

B2 = 
B2  

 0  

(33) 

C    = C 0 C =0 I C = C 0 C = C
T 

C
T

 CT 
T
 C  = C 0 

s1 s s2 s3 s s   
 s1 s2 s3  

r r 

 

Thus, once the feedback matrices 
 

    

F = (F1, F2 , F3) are obtained using Algorithm 2 

as applied to system (33), the original PID gains 

from (19). 

F = (F1, F2 , F3 ) can be recovered 

6. Maximum Output Control with PID 

The design problem of a PID controller under the performance requirement that the 

system output yr is smaller than a specified value  when the input signal w is 

bounded, is known as Maximum Output Control (MOC) problem. To handle such 
problem, consider the system 
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0     

P 
 

 

x& = Ax + B1w + B2u 

 ys = Csx 

 yr = Cr x + Du 

 

(34) 

With x(0)=0. The Static Output Feedback Maximum Output Control (SOFMOC) 

problem is to find a control of the form 

u = Fys (35) 
 

such that the maximum regulated output Yr,max, from w to yr, of the closed-loop sys- 

tem, under the command input w, satisfies 
 

Yr,max = supt  0 ||yr(t)||   (  0) (36) 

 

This is fulfilled if there exist matrices P>0 and F, and numbers 20, >0, such that 

the following linear matrix inequalities hold [21-22]: 
 

 (Cr + DFC s )
T 

 

 

(Cr + DFC s ) 
 2 

I
 

 

  0 
 
 

 
(37) 

 ∑ 3 PB1  
 0

  
B

T 
P −  I  

 1 2  

Where ∑3 = (A + B2FCs)
T 

P + P(A + B2FCs) +2P . 

An iterative LMI algorithm (Algorithm 3) for solving SOFMOC is developed in [21- 

22] and shown in Appendix 4. 

The PID design with MOC specifications converts to a SOFMOC for the dynamics 

of the newly obtained system 

z& = Az + B1w + B2u  
y = Cs z  

 
 

 yr = Cr z + Du 

u = Fys 

So, Algorithm 3 can be applied to (38) using 

(38) 

 
 

A = A, 

where 

 
 

B1 = B1, 

 
 

B2 = B2 , 

 
 

Cs = Cs , 

 
 

Cr = Cr , 
 

 

F = F 

 A 0 
A = 

C 
 

 s  

B1 = 
B1  

 0  
B2 = 

B2  

 0  
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Dy1  

 

 

 

 

C   = C 0, C = 0 I , C = C 0, C = C
T 

C
T
 C

T 
T 

, C  = C 0 
s1 s s2 s3 s s   

 s1 s2 s3  
r r 

 

As before, to recover the original PID gains F = (F1, F2 , F3 ) from the feedback 
 

    

matrices F = (F1, F2 , F3) , the relations in (19) can be applied. 

7. Simulation Results 

To demonstrate the effectiveness of a PID controller designed as Hi, H2 and Max 

while driving the plant, several tests are carried out and the results are presented and 

compared with those of the classical robust controller ROB. The simulation results 

are obtained using MATLAB package and LMI Toolbox. 

 

A.) Parameters of the robust controller (ROB): 

Initial condition (operating point) for the nonlinear system: 

x0=[0.775 0 1.434 -0.0016 0.8 0.8]T 

Plant P(s): 

x& = Ax + B1w + B2u 
 

P(s): z = Cz x + Dz1w + Dz2u 

 y = Cy x + Dy1w + Dy2u 

Cz = C1 

 

= +C , Cy = C2 

 

= −C , D = 
 Dz1 

 

Dz2  

Dy2  

 

 0 1 0 

 

0 0 0  

 
 

A =  

  

  
 

 

  −  

   

 
   

−    
 

      

 0 0 
  
  
   

−   

B1 = 06x2 , B2 =  
   

    
  

    

 

 − 6 − 5 −      

 − 3  −      , 
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0
 

  

, 

 

1 2 
 

3 

     

 

 

 

 

 

C = 
1.27  0 

0.03  0 

0.88   0 

0.53   0 

0  0
,
 

0  

 

D = 0 
 
2x2 

 
Controller K(s): 

− 72  19.3 97 − 124  182 − 705   212 126  

 
 
− 24 

 
−14  

Ak =  

 
 Bk =  

  

131 

172 

76  
 , 

88  

 

C = 
- 4 

 

 
 

-1.6 

 

 
 

7.9 

 

 
 

0.35 

 

 
 

-1.4 

 
 
 

0.9  , 

−1155 
 

 6009 

D = 0 

− 725  
 

3608  

k 
407 360 5 351 − 2887 13030 

 k 

Desired H-norm: =100 

Optimum H-norm: opt = 7.8603 

Closed-loop eigenvalues: CL = [-15370, -103±436i, -229, -10, -4.7, -2.2 ±2.7i, - 

1.3± 2.8i, -0.63, -1]T 

 

B.) Parameters of H∞-PID controller (Hi): 

 
The obtained PID gains are: 

 

− 422 
F =  

354 

2029  
− 1720  

− 24 
F =  

14 

803  
− 681  

− 218 
F =  

185 

435  
 

368  

F = F1 F2 

Riccati starting matrix: Q0= 10I8x8 

Desired dominant eigenvalue: opt = 0 

F3  

Obtained dominant eigenvalue: opt = -0.77 

Closed-loop eigenvalues: CL = [-998-6.4 ± 15.8i-6 ± 5.6i-0.43-1.87-4.1 ]T 

C.) Parameters of H2-PID controller (H2): 
 

+ 0.14 
 

+ 0.34  − 0.21 
 

+ 0.22  + 0.24 
 

 

+ 0.19  
F1 = 

−1.55 − 34.2 
 F2 = 

− 3.10 − 29.3  
F3 = 

+ 2.86 − 17.9  

F = F1 F2 F3  
 

Initial Riccati matrix: Q0=10*I8x8 

Closed-loop eigenvalues: CL =[-225-4.4 ± 4i-1.7 ± 1.97i-1±0.74-1.16 ]T 

− 

 
− 3 − 46 − 40.5 − 34 368 − 1658 

95 65 − 179 − 77 74 − 104 

− 1.9 36 − 9 − 99 117 - 378 

38  − 252 79 672 − 881 2808 

− 219 1279 − 99 − 3476 4503 − 4527 
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D.) Parameters of MOC-PID controller: 

 

 

 
 

 

F1 = 
 

 
 

 

 

F = F1 

 
 

 
 

F2 F3  
 

Initial Riccati matrix: Q0=I8x8 

Closed-loop eigenvalues: CL =[-1362-9.94-1.1 ±5.9i-1.1 ± 1.04i-0.48-0.81 ]T 

Test 1: Step-response 

To test the effectiveness of the system equipped with each of the named 

three LMI-based iterative multivariable PID namely; PID design using H-norm 

(Hi), PID design using H2-norm (H2), PID design with Maximum Output Control 

(Max), and the LMI-based robust output feedback controller using H-norm (ROB), 

an increase (at t=0 s) then a decrease (at t=15 s) by 5% in both Pref and Vref is 

applied. The time responses of the exciter input voltage Ue, the governor valve 

position Ug, the output active power Pt, and the terminal voltage Vt, are shown, 

respectively, in Fig. (4). Best performance is characterized by lower or no 

over/undershoots, less or no oscillations, short rise and settling times. Based on this, 

Hi shows the best response whereas ROB shows the worse response with higher 

overshoots. For Vt response, H2 shows the best response whereas Max shows the 

worse one with longer settling time. 

 

Fig. (4). Step-response following Pref=Vref =5% (a) Exciter Input Ue 

=100  

=50 

− 0.021 

 

+ 1.3 

 
 − 0.32 + 0.53  
 F2 =   

 

− 0.035 + 0.51  

− 47.3 −152  − 27 − 52 
F3 = 

+ 3.75 − 88   
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Fig. (4.b). Governor input Ug 

 

Fig. (4.c). Power output Pt 
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Fig. (4.d). Terminal voltage Vt 

 

Test 2: Tracking-response 

To test the effectiveness of the system to tracking the reference control 

values, the simulation period is divided into 4 regions where the reference values of 

the controlled variables (Vref and Pref) increase linearly, then remain steady, then a 

linear decrease, and finally return to nominal values. The time responses of the 

exciter input voltage (voltage control effort) Ue, the governor valve position 

(governor control effort) Ug, the output active power Pt, and the terminal voltage Vt, 

are shown, respectively, in Fig.(5). For Pt-response, Hi shows the best response 

whereas H2 shows the worse with longer settling time. For Vt response, Max shows 

the best response whereas ROB shows the worse one with longer settling time. 
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Fig. (5). System response due to reference tracking (test 2) .(a) Exciter Input Ue 

 

Fig. (5.b). Governor input Ug 
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Fig. (5.c). Power output Pt 

 

Fig. (5.d). Terminal voltage Vt 
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Test 3: Parameters Variation 

To test the robustness to parameters change, an increase by 50% in the 

inertia constant H and in the damping torque coefficient Td are applied. Fig.(6) 

shows the system response following a step change by 5% then -5% in Vref and Tref 

with the system experiencing the described parameters change and using the 

controller gains found for the normal case. 

The time responses of the exciter input voltage (voltage control effort) Ue, 

the governor valve position (governor control effort) Ug, the output active power Pt, 

and the terminal voltage Vt, are shown, respectively, in Fig.(6). For Pt-response, Hi 

shows the best response whereas ROB shows the worse one with large 

over/undershoots. The other two, exhibit relatively larger rising and settling times. 

For Vt response, H2 shows the best response whereas Max shows the worse one with 

longer settling time. 
 

Fig. (6). System response with parameters change (test 3). (a) Exciter Input Ue 
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Fig. (6.b). Governor input Ug 

 

Fig. (6.c). Power output Pt 
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Fig. (6.d). Terminal voltage Vt 

 

8. Conclusion 

Four controllers, the first, a robust H-LMI based output feedback (ROB) and the 

other three LMI-based iterative multivariable PID controllers namely; PID design 

with H-specifications (Hi), PID design with H2-specifications (H2), PID design 

with maximum output control (Max), were designed for a sample power system 

comprising a steam turbine driving a synchronous generator connected to an infinite 

bus via a step-up transformer and a transmission line. Several tests were applied to 

allow for a comparative study between the performances of the proposed controllers. 

The quality of the controller response is selected through its performance that is 

characterized by lower or no over/under shoots, less or no oscillations, short rise and 

settling times. 

From the simulation results, it is clear that in all cases, PID exhibits better 

performance than the classical robust control (ROB). Hi shows the best responses for 

Pt in all the tests done whereas, for Vt, H2 and Max present the best response for all 

tests done. ROB has another inconvenient that is its high order which is equal to the 

plant model order, thus it is more complicated in its implementation. 

As an extension, the performance of the PID via multi-objective and poles 

placement, the extension to a multimachine power system, and the inclusion of the 

nonlinear features inherent in the system, will be considered in the future. Moreover, 

more tests should be done, and diverse controller parameters should be varied to 

extract all features of each of the cited controllers. 
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Appendix 

APPENDIX 1: SYSTEM PARAMETERS 

MVA 37.5 xt 

xl 

e 
e 

g 

b 

Kv 

Ke 

vd 
vq 
Vt 

K1 

0.345 pu 

0.125 pu 

1 pu 

0.1 s 

0.1 s 

0.5 s 
1.889 

0.01 

0.5586 
1.1076 

1.2405 

1.2564 

K2 -0.9218 

MW 30 K3 -0.5609 
p.f. 0.8 lagging K4 0.4224 

kV 11.8 K5 0.7983 
r/min 3000 K6 0.5905 
xd 2 pu K7 0.3650 
xq 1.86 pu K8 -39.559 
xad 1.86 pu K9 -27.427 
xfd 2 pu K10 -0.2955 
Rfd 0.00107 pu K11 1.268 
H 5.3 MWs/MVA K12 0.8791 
Td 0.05 s K13 0.0287 

  K14 0.52726 

 

APPENDIX 2: ALGORITHM 1 (HI) 

Step 0: Form the system state space realization: (A, B1, B2 ,Cs ,Cr , D) and select the 

performance index  
Step 1: Choose Q0 > 0 and solve P for the Riccati equation: 

A
T 

P + PA-PB B
T 

P + Q = O, P  0 
2  2 0 

Set i= 1 and X =P 

Step 2: Solve the following optimization problem for P, F and i. 

OP1: Minimize i subject to the following LMI constraints 
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1 

2 

S 

s   0 

 

r 

s 

2 2 

 

 

1 s s 

 
 

∑ 1 PB1 (Cr + DFCs )
T

 (B
T 

P + FCs )
T 

 

 
 B

T 
P −  0 

 

2  
 
  0 

Cr + DFCs 0 − I 0  
B

T 
P + FC 0 0 − I  

 

 

 
Where 

 2 s  
 

P  0 

 

(A1) 

∑1 = AT P + PA -XB 2 BT P - PB 2 T X + X B 2 T X- α P 

Denote by * the minimized value of . 

Step 3: If *0, the matrix pair (P,F) solves the problem. Stop. Otherwise go to 
Step 4. 
Step 4: Solve the following optimization problem for P and F. 

OP2: Minimize trace(P) subject to LMI constraints (A1) with =*. Denote by P* 
the optimal P. 

Step 5: If || XB − P
*
B ||  . where  is a prescribed tolerance, go to Step 6; 

Otherwise set i= i + 1, X=P*, go to Step 2. 

Step 6: It cannot be decided by this algorithm whether the problem is solvable.  
Stop. 

Appendix 3: Algorithm 2 (H2) 
Step 0: Form the system state space realization: (A, B1, B2 ,Cs ,Cr) and select the 

performance index  
Step 1: Choose Q0 > 0 and solve P for the Riccati equation: 

 

Set i= 1 and X =P 

AP + PA
T 

-PC
T 

CS P + Q0 = O, P  0 

Step 2: Solve the following optimization problem for Pi, F and i. 

OP1: Minimize  subject to the following LMI constraints 

 ∑ 2
 

T T 
B2 F + PC

T 
 

(B2 F + PCs ) − I  

trace (Cr PC
T 

)   2 

 

 
(A2) 

 
Where 

P  0 

∑ 2 = AP + PA T + B1 T -XC T s P - PC T s X + XC T C s X- α .P 

Denote by * the minimized value of . 

B B 

B C C 

0 
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1 

2 2 2 

2 

 

 

Step 3: If *0, the matrix pair (P,F) solves the problem. Stop. Otherwise go to 
Step 4. 
Step 4: Solve the following optimization problem for P and F. 

OP2: Minimize trace(P) subject to LMI constraints (A2) with  = *. Denote by 
P* the optimal P. 

Step 5: If ||XB-P*B||<ε. where  is a prescribed tolerance, go to Step 6; 
otherwise set i= i+1, X=P*, and go to Step 2. 
Step 6: It cannot be decided by this algorithm whether the problem is solvable.  
Stop. 

Appendix 4: Algorithm 3 (Max) 
Step 0: Let the system state space realization (A, B1, B2 ,Cs ,Cr,D), a performance 

index , and a given number >0 be given 
Step 1:   Choose Q0 > 0 and solve P for the Riccati equation: 
A

T 
P + PA-PB B

T 
P + Q = O, P  0 

2    2 0 

Set i= 1 and X =P 

Step 2: Solve the following optimization problem for P, F and . 

OP1: Minimize  subject to the following LMI constraints 
 

∑ 4
 PB1 (B

T 
P + FCs )

T 
 

 
 BT P 
 

2 

−  2I 0 

 
  0 
 

 
(A3) 

B
T 

P + FC 0 − I  

 2 s 

 P 
 

 
(C

r
 

 

+ DFC 

 

)T  
s  

 
(C 
 

+ DFC 
s 

) 
   0 

I 
  

 
Where 

P  0 

∑ 4 = A
T 

P + PA + XB B
T 

P -PB B
T 

X + XB B
T 

X +  P- P. 

Denote by * the minimized value of . 

Step 3: If *0, the matrix F solves the problem. Stop. Otherwise go to Step 4. 
Step 4: Solve the following optimization problem for P, F. 

OP2: Minimize trace(P) subject to LMI constraints (A3) with  = *. Denote by 
P* the optimal P. 

Step 5: If ||XB-P*B||<ε. where  is a prescribed tolerance, go to Step 6; otherwise 
set i= i+1, X=P*, 

r 

2 2 2 2 
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 2 = 

and go to Step 2. 

Step 6: It cannot be decided by this algorithm whether the SOFMOC problem is 

solvable. Stop. 

  1 1  

 tr(P
*
) 

trace(P
*
B B

T 
P

*
) 


