

Journal of Engineering and Computer Sciences

Qassim University, Vol. 4, No. 1, pp. 83-101 (January 2011/Moharram 1432H)

A Developed Softwae For an Improved

Mesqa Hydraulic Design

Mohamed A. Nassar* and Abdelmoez. M. Hesham**

*Assistant Professor, Water & Water Structures Engineering Dept., Faculty of Engineering, Zagazig

University, Zagazig 44519, Egypt
nasserzagazig@yahoo.com

* *
Physics and Eng. Mathematics Dept., Mataria Faculty of Engineering, Helwan University, Cairo,

Egypt, habdelmoez@yahoo.com

(Received 29/7/2010; accepted for publication 8/1/2011)

Abstract. The proposed software is an advanced computational hydraulic software tool specially adapted

for the design, and management of pressurized irrigation networks. The hydraulic solver uses specific

strategies and incorporates several new features that improve the algorithms for pipe networks

computation. These networks consist of a pumping station, main and secondary flow paths, valves,

hydrants, and ancillary equipments. The software simulates hydraulically the flow in the pipe lines by
computing the different nodes’ pressure. It executes this throughout converting gis maps digitally into

pipe lines, valves, and main pumping station. It is applied on the iip (i.e., irrigation improved project)

which is one of the national irrigation development projects in egypt. There is no commercial program

produces all these targets because iip has its own specific design criteria such as discharge, water duty,

and different sets of pumping units. Total economic aspects including pump station and the network parts

together with their constituents are computed too. Construction contracts according to the requirements of

the egyptian irrigation ministry's specification are accomplished. It has been tested, calibrated and

approved on some developed mesqas comparing manual and implemented results. The efficiency of some
algorithms has been estimated using computational geometry rules.

Keyword: hydraulics, gis, mesqa design criteria, vbasic, algorithm efficiency.

83

mailto:nasserzagazig@yahoo.com
mailto:habdelmoez@yahoo.com

84 Mohamed A. Nassar and Abdelmoez. M. Hesham

1. Introduction

Reviewing the literature over the past five to ten years, there is indeed a substantial

increase in the number of computer programs water-flow models. A number of

packages are available that allow simulation models to be constructed for water

criteria specific requirements. Popular packages include EPANET (US

Environmental Protection Agency) [1], Infoworks (Wallingford software [2], and

SynerGEE (Advantica) [3]. The design of distribution networks using these software

packages has developed from trial and error to, more recently, the use of various

forms of optimization, including genetic algorithms (e.g. Dandy et al., [4]).

Bhattacharya et al. [5] proposed an ANN (Artificial Neural Network) with

reinforcement learning which could learn to replicate the optimal control strategy

(based on capturing operator experience). Rao and Salomons [6] developed a GA

(Genetic Algorithm) and an ANN model for capturing the knowledge base of an

EPANET model and consequently producing a near optimal solution.

This paper presents a software to simulate the pressurized pipe system. The

software may be as simple pipe carrying water from one reservoir through network

to one valve, or it may be very complex with many interconnected pipes that

distribute the flow throughout a large pipe networks. Our software can model pipe

networks and calculate the flow and pressure throughout a system with different

pipe sizes and pipe materials, supply and discharge tank, pumps, valves, flow

controls, system demands and other component. The pipeline system is modeled by

drawing the join points and the connecting pipes on a drawing pane. Horizontal,

vertical or sloping lines can be used to connect one node to another node. The

optimum design is fulfilled throughout dividing the design process into its main

categories and precisely defining each category. Section 3 provides criteria for

design of water distribution systems, while section 4 gives the proposed program

calibration utilities including a handout solved example on these criteria. Section 5

gives more sophisticated pictures of the proposed software results, while section 6

concludes and suggests the future work of this paper.

2. Software Overview

The program will allow user to draw a complex pipeline system and analyze the

features of the system when flow is occurring. It calculates the balanced steady flow

and pressure conditions of the system. In addition, it will allow user to perform

analysis of alternate systems under various operating conditions. The physical data

describing the system is entered by the user and typically includes:

• The internal size, internal roughness and length of each pipe.

• The elevation of each pipe join point (node) and the In-flow and the Out-

flow at each join point.

• The elevation, liquid level and surface pressure data for the main tank.

The reported results include: flow rates for each pipe; pressures at each node;

HGL (hydraulic grade line) values; pump operating points and NPSH (i.e., Net

Positive Suction Head) at pump inlet. Total economic aspects including pump

station and the network parts together with their constituents are computed too.

A Developed Softwae For an Improved… 85

Construction contracts according to the requirements of the Egyptian irrigation

ministry's specification are accomplished.

In the other hand, under IIP (i.e., Irrigation Improved Project), hydraulic

design of improved branch canals has been carried out using a version of Mott

MacDonald’s in-house simulation model, which was specially customized at the

start of the project in 1996/97 to meet the specific requirements of IIP. This version

of the model runs under DOS, which is not now available on most computers. In

1993, Delft Hydraulics introduced a new unsteady-flow simulation software

package, SOBEK [7]. It includes a link to MATLAB so that control decisions can be

made within that framework. Water levels are passed to MATLAB and gate position

changes are passed back to SOBEK. The control routines are written as MATLAB

files. Recently, canal control studies have been conducted with the SOBEK–

MATLAB combination by Delft Hydraulics.
Actually, the design staff of IIP (i.e., Irrigation Improved Project) was

suffering from a big problem, which is the difficulty to abstract the maximum water

levels at the different studied point in the same reach. We present here a simple

program to abstract these values in easy way. The main purpose is simplifying the

way in which the design staff defines the maximum water levels. We added a

subroutine to the present software, which helps the user to abstract the water levels

and save them as an excel file.

3. Criteria of the Design of Water Distribution Systems

For the IIP-area, the design criteria, which are respected during the development of

the software are as the followings:

• Rice (maximum crop water requirement) could be grown in 100% of the
mesqa command area.

• Maximum number of pumping units to be 3-units per pump house.

• Mesqas will be designed using PVC pipes 4 bar pressure rating.

• The minimum pipe diameter used for mesqa pipelines will be 200 mm.

• In case of using a stand, the pipeline will be provided with an open air vent

at the end of each branch.

• In case of using direct connection, the pipeline will be provided with an

air/vacuum valve on the pump delivery manifold and a pressure relief valve at the

end of the pipeline.

• The maximum water velocity in the pipeline should not exceed 1.50 m/sec,

• The head loss through the mesqa pipeline network is to be determined
according to the following empirical formula:

V
2

V
2

H = (c + n K + n c) P + 3.29 R + H + H + Min Valve Head(1)
L in T B B

2g

2g
f

marwa

86 Mohamed A. Nassar and Abdelmoez. M. Hesham

H m P f

where: cin is the head loss coefficient at mesqa pipeline inlet, cin = 0.50, K is

the head loss coefficient at Tee connection, see table No. (1), nT is the number of

the Tee along mesqa pipeline, cB is the head loss coefficient in bends, cB = 0.90;

nB is the number of the bends along mesqa pipeline, Vp is the average water velocity

in the mesqa pipeline; VR is the average velocity in the riser (m/sec);

friction head loss, it is computed using William-Hazen's equation,

H f is the

H = (3.59 C)1.852 (Q
1.852

 D
4.87

)L

(2)

where: Qm is the discharge (m3/sec), DP is the pipe diameter (m), L is the

pipeline length (m), and CH is Hazen friction Coef., 150 and 140 for PVC and PE,

respectively, H marwa is the operating head at the marwa off take ranges from 1.5 to

2.0 m [used for case of neglecting the marwa during design stage].

Table (1). Head loss coefficient due to the Tee connection with valves

Diameter of the pipeline (mm) K

200 to 250 0.28

300 to 400 0.26

450 to 600 0.24

4. Calibration of the Proposed Software

4.1. Practical calibration:

The developed software is calibrated using a simple type of networks. It

simulates the pressurized flow in a simple network. It includes a single path only,

see Fig. (1). It is necessary to mention that it is an imaginary network.

4.1.1. Design example:

4.1.1.1. Given:

A parcel of land of about 43F has a main canal, a pump station, and 5 valves.

All needed data for design are presented as tabulated in table (2).

Fig. (1). The pressurized flow in a simple network.

Table (2). Designed data for the simple network

Km 0 0.005 0.155 0.205 0.28 0.375

Land level 2.54 2.41 2.41 2.43 2.37 2.61

land level for marwa 2.33 2.33 2.31 2.35 2.42

m

l/s

Dia in m

A Developed Softwae For an Improved… 87

4.1.1.2. Required:

The main targets of the design are including both operating head (m), and

Stand total height (m).

4.1.1.3. Manual solution:

• Max. Discharge = 0.84*43 = 36.12 1/s 40 l/s.

• Max no of valves working in certain time = 2 valves.

V
2

V
2

• H = (c + n K + n c) P + 3.29 R + H + H +0.6+(if
L in T B B

2g

2g
f

marwa

tank >6.0 take 0.2 into account)

• HL(0) = (0.5 + n x0.28 +0.9 x1) Vp2/2g +3.29(VR
2)/2g +(3.59/150) 1.852 x

(Q1.852/D4 .87)

x L + 0.6 +(if tank >6.0 take 0.2 into account)

• HL(0) = (0.5+ 2 x 0.28 + 0.9 x 1) (1.09)2/2g +3.29(1.02)/2g +(3.59/ 150)
1.852

x(0.041.852/(0.216)4 .87)x 280 +(3.59/150) 1.852 x ((0.02)1.852/(0.192)4 .87)x

95+1.5 + 0.6 +(if tank >6.0 take 0.2 into account)

• HL(0) = 0.1186 +0.1676 +1.2511+0.2086+1.5+0.6= 3.84616m

• HL(0.005) = (0.5+ 2 x 0.28 + 0.9 x 1) (1.09)2/2g +3.29(1.02)/2g +(3.59/ 150)

1.852 x(0.041.852/(0.216)4 .87)x 275 + (3.59/150) 1.852 x ((0.02)1.852/(0.192)4 .87)x

95+1.5 + 0.6 +(if tank >6.0 take 0.2 into account)

• HL(0.005) = 0.1186 +0.1676 +1.228+0.2086+1.5+0.6= 3.826m

• HL(0.155) = (0.5+ 2 x 0.28 + 0.9 x 1) (1.09)2/2g +3.29(1.02)/2g +(3.59/ 150)
1.852

x(0.041.852/(0.216)4 .87)x 125 + (3.59/150) 1.852 x ((0.02)1.852/(0.192)4 .87)x

95+1.5 + 0.6 +(if tank >6.0 take 0.2 into account)

• HL(0.155) = 0.1186 +0.1676 +0.558+0.2086+1.5+0.6= 3.15m

• HL(0.205) = (0.5+ 2 x 0.28 + 0.9 x 1) (1.09)2/2g +3.29(1.02)/2g +(3.59/ 150)

1.852
x(0.041.852/(0.216)4 .87)x 75+ (3.59/150) 1.852 x ((0.02)1.852/(0.192)4 .87)x 95+1.5

+ 0.6 +(if tank >6.0 take 0.2 into account)

• HL(0.205) = 0.1186 +0.1676 +0.335+0.2086+1.5+0.6= 2.92

• HL(0.280)= (0.5+ 2 x 0.28 + 0.9 x 1) (1.09)2/2g +3.29(1.02)/2g+(3.59/150)
1.852 x ((0.02)1.852/(0.192)4 .87)x 95+1.5 + 0.6 +(if tank >6.0 take 0.2 into account)

• HL(0.280) = 0.1186 +0.1676 +0.2086+1.5+0.6= 2.59

• HL(0.375)= (0.5+ 2 x 0.28 + 0.9 x 1) (1.09)2/2g +3.29(1.02)/2g+1.5 + 0.6 +(if

tank >6.0 take 0.2 into account)

• HL(0.375) = 0.1186 +0.1676 +1.5+0.6= 2.38

Finally, the hydraulic calculation can be tabulated in the following table (3)

and figure (4).

• Stand total height = 3.8461 + 0.75+0.4+.25= 5.2461 m

• Stand Top level = 5.2461 + 1.09= 6.336 m.

88 Mohamed A. Nassar and Abdelmoez. M. Hesham

Table (3). Manual design operating head for the different nodes in the simple network

Km 0 0.005 0.155 0.205 0.280 0.375

Land level 2.54 2.41 2.41 2.43 2.37 2.61

Op. head (m) 3.84 3.82 3.15 2.92 2.59 2.38

4.1.2. Solution of the simple network using the proposed software:

The simple network is modeled using the proposed software in three steps as

following:

1- Input the data of the design including area served by the pump station;

the land level the pump station; and the necessary definition of the network.

2- Digitizing the network path as shown in Fig. (2A), and checking the

input date for the path itself, see Fig. (2B), and.

3- Presenting the output data including the design for the path and pump

sets and both operating head (m), and Stand total height (m), see Fig. (3).

It can be noticed that, the out screen of the software including the all design

data for the flow paths and network see, Fig. (3) at the left hand side. In addition, the

hydraulic gradient line and all graphs for the designed path are presented in the same

figure. The output of the software can be listed as following:

• Stand height (m)= 5.270;

• Q (l/s)=40 ;

• Mesqa Length (m)= 364.3;

• Length per fed.(m)= 15.839;

• Pump Cat. = Categ. 2 cover (5.0 to 8.5 m); and

• Pump sets (i.e., the formulation of the pumps): two pumps of 20(lit/s)

4.1.3. Analysis of practical calibration:

Figure (4) shows a comparison between the hydraulic gradient line calculated

with the developed software and that calculated manually for the studied network. It

can be seen that the hydraulic gradient line calculated from the software is higher

than that calculated manually by about 18cm, see Fig.(4). The calculated stand

height using the proposed software is nearly identical with that calculated by the

manual procedure. The difference was about 13.1 cm. The statistics' measures,

which are R2 and correlation factor, are used to measure the ability of the developed

software as a tool to calculate the hydraulic gradient line through the studied

network. R2 and correlation factor are 0.978 and 0.989, respectively. Using

statistical analysis principles, and based on both modeled and calculated values of

the hydraulic gradient line, it was found that the developed software is well verified

and an accurate tool to the hydraulic gradient line along the studied network. The

accuracy was more than 97%.

A Developed Softwae For an Improved… 89

(a)

(b)

Fig. (2). The inputs screen shots of the software; (a) the digitizing form (b) digitized data.

90 Mohamed A. Nassar and Abdelmoez. M. Hesham

Fig. (3). The outputs screen shot of the software for the simple network.

7.0

6.0

5.0

4.0

3.0

2.0

1.0

0.0

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

Mesqa Chainage (km)

Fig. (4). Calculated and modelled hydraulic gradient line through the studied network.

4.2. Theoretical Calibration

4.2.1. The Efficiency of some algorithms included:

The algorithm efficiency can be measured either by the time it takes to run a

program or by the space the program takes up in memory [8]. We will focus on an

algorithm’s efficiency with respect to time. How do we compare the time efficiency

of two algorithms that solve the same problem? One approach: implement the two

Hyd.G.[Model]

 Hyd.G.[Manuall]

Land Level
 Valves

Pipe Level

L
e

v
e

ls
 f

o
r

(L
a

n
d

,
P

ip
e

 a
n

d
 H

.G
.L

)

A Developed Softwae For an Improved… 91

algorithms in Visual Basic (VB) and run the programs … this presents some

difficulties:

i) How are the algorithms coded?

If algorithm A runs faster than algorithm B, it will obviously give one

algorithm an advantage. Hence, we would be comparing the algorithms’

implementations, rather than the algorithms themselves. We should not compare

implementations, because they are sensitive to factors, such as programming style,

that tend to cloud the issue of which algorithm is inherently more efficient.

ii) What computer speed should we use?

If one computer is faster than the other, it will obviously give one algorithm

an advantage. Hence, both algorithms should be run on the same computer.

iii) What computer type should we use?

The type of computer is also more important. The particular operations that

the algorithms require can cause A to run faster than B on one computer while the

opposite is true on another computer. Hence, we must be able to compare

efficiencies independent of a particular computer.

iv) What data should the program use?

There is always the danger of selecting data sets for which one of the

algorithms runs uncharacteristically fast (or slow). Example: sequential search vs.

binary search when search item is the first element in the array. Hence, we must be

able to compare efficiencies independent of a particular data set. To overcome these

difficulties, computer scientists employ mathematical techniques that analyze

algorithms independent of specific implementations, computers, and data [9, 10]. An

algorithm’s efficiency is related to the number of operations it requires. If a function

contains no loops, its efficiency is simply a function of the number of instructions it

contains. In other words, the more instructions the function contains, the longer it

will take to execute. That being said, with current computer speeds on the order of 3

GHz, it doesn’t make much of a difference if our program has 10 instructions or

1000 instructions … we really won’t notice a difference. However, when we are

dealing with functions that loop, the problem becomes non-trivial. The study of

algorithm efficiency therefore focuses on loops.

We typically discuss an algorithm’s efficiency as a function of the number of

elements to be processed. For example, if we want to determine the efficiency of an

array-sorting algorithm, we express the efficiency of the algorithm as a function of

the number of elements of the array, n. The general format is: f (n) = efficiency.

Let us start with a simple loop. We want to know how many times the body

of the loop is executed

In the following code:

i=1

loop (i<=1000)

(loop body)

i = i + 1

end loop

92 Mohamed A. Nassar and Abdelmoez. M. Hesham

The answer is 1000 times. The number of iterations is directly proportional to

the loop factor, 1000.

Hence, the larger the loop factor, the more loop iterations we will complete.

Because the efficiency is directly proportional to the number of iterations, its

efficiency can be represented as: f(n) = n. However, the answer is not always as

straightforward as it was in the previous example. For example, consider the

following loop:

i = 1

loop (i <= 1000)

(loop body)

i = i + 2

end loop

In this case, the body of the loop is executed 500 times – half the value of the

loop factor. Once again, however, the larger the loop factor, the more loops we

execute. The efficiency of this loop is therefore:

f(n) = n/2. If you were to plot either of these loop efficiencies, you would get

a straight line. Hence, they all called linear loops.

In our previous examples, our control variable was incremented by either 1 or

2 each time through the loop. Now consider a loop in which the controlling variable

is multiplied or divided in each loop.

Multiply Loops

i = 1

loop (i < 1000)

(loop body)

i = i * 2

end loop

Divide Loops

i = 1000

loop (i >= 1) (loop body)

i = i / 2

end loop

How many times are the loop bodies executed in the above code sections?

See table (4).

As we can see, the number of loop iterations is 10 in both cases. Note that in

each iteration the value of i doubles for the multiply loop and is cut in half for the

divide loop. Thus, the number of iterations of the loop is a function of the multiplier

or divisor, in this case, 2. That is, the loop continues while the Condition shown

below is true:

multiply: 2iterations < 1000, divide: 1000 / 2iterations >= 1

Generalizing the analysis, we can say that the efficiency of loops that multiply or

divide by 2 is determined by the following formula: f(n) = log2n.

For linear logarithmic loops, the following code will be considered:

i = 1

loop (i <= 10)

A Developed Softwae For an Improved… 93

j = 1

loop (j <= 10)

(loop body)

j = j * 2

end loop

i = i + 1

end loop

Table (4). Logarithmic loops.
Multiply Loop Divide Loop

Iteration Value of i Iteration Value of i

1 1 1 1000

2 2 2 500

3 4 3 250

4 8 4 125

5 16 5 62

6 32 6 31

7 64 7 15

8 128 8 7

9 256 9 3

10 512 10 1
(exit) 1024 (exit) 0

The inner loop is a multiply loop. The number of iterations in the inner loop

is therefore log210. We must then multiply this by the number of times the outer

loop executes. This gives us 10*log210 which is generalized as f (n) = nlog2n.

With the speed of computers today, we are not concerned with an exact

measurement of an algorithm’s efficiency as much as we are with its general order

of magnitude [11, 12]. For example, if the analysis of 2 algorithms shows that one

finishes after 15 iterations while the other takes 25 iterations; then they are both so

fast that we can’t see the difference. However, if one algorithm finishes after 15

iterations and the other takes 15,000 iterations, this is a more significant difference.

We have shown that the number of iterations an algorithm executes, f(n), can

be expressed as a function of the number of elements associated with the algorithm.

Although the efficiency equation derived for a function can be complex, we can

examine the dominant factor in the equation to determine the relative magnitude of

the efficiency.

Hence, we don’t need to determine the complete measure of efficiency, only

the factor that determines the magnitude. This factor is the big-O, as in “on the order

of,” and is expressed as O (n). This simplification of efficiency is known as big-O

notation. The big-O notation can be derived from

f (n) using the following steps:

1- We set the coefficient of each term to 1.

2- We keep the largest (least efficient) term in the function and discard the

others.

Terms are ranked from most efficient (leftmost terms) to least efficient

(rightmost terms) as shown below:

94 Mohamed A. Nassar and Abdelmoez. M. Hesham

constants log2n n nlog2n n2 n3…nk 2n n!

For example, let’s calculate the big-O notation of the following efficiency:

f (n) =
n (n + 1)

=
1

n 2 +
1

n
2 2 2

n2 + n

First, we set all coefficients to 1. This gives us:
n2 + n

Next, we keep the largest term in the function and discard all others. This

leaves: n2. Therefore, we can write the big-O notation as: O (n2).
As another example, let’s look at the polynomial expression:

f (n) = 6n4 log n +12n3 + 2n2 + n +128

First, we eliminate all of the coefficients: f (n) = n
4
log n + n

3
+ n

2
+ n +1

We then select the largest term and discard the rest. This gives us: O(n
4
log n)

Note that constants are the MOST efficient. We think about it like this: If we

have an efficiency of 100,000,000 vs. n, which is more efficient? Answer: since n

can equal 100,000,001, the constant is the most efficient. See the following criteria:

When comparing two algorithmic efficiencies, the “most efficient” one grows

the slowest. Easy test: After computing the efficiencies (e.g., n0.5 and n2) plug in a

huge value for n; then whichever efficiency results in the smallest value is the most

efficient. Here n0.5 is more efficient than n2.

To get a feel for how much of a difference an algorithm’s efficiency makes,

check out the table (5) together with figure (5). The table assumes an instruction

speed of 1 microsecond, 10 instructions per loop, and n=10,000.

Note: performing an order-of-magnitude analysis implicitly assumes that the

algorithm will be used to solve large problems.

A Developed Softwae For an Improved… 95

Table (5). Standard measure of algorithm efficiency.

Fig. (5). Standard measure of algorithm efficiency.

4.2.2. Analysis of theoretical calibration:

Algorithm analysis is the area of computer science that provides tools for

comparing the efficiency of different methods of solution. This analysis concerns

itself primarily with significant differences in efficiency. Usually, significant

differences only arise through superior solutions and rarely through clever coding

tricks. Reductions in computing costs due to clever coding tricks are often more than

offset by reduced program readability, which increases human costs.

96 Mohamed A. Nassar and Abdelmoez. M. Hesham

An algorithm analysis should focus on gross differences in the efficiency of
algorithms that are likely to dominate the overall cost of a solution. Otherwise, we
could select an algorithm that runs a fraction of a second faster than another
algorithm yet requires many more hours of our time to implement and maintain.

In our proposed software there are many algorithms. One of the very
beginning ones are that for transporting design data for every path of the network
paths under study from the program design file (since the program carries out the
design operations in a hidden Excel file) and showing them to the designer on the
screen as a table form to ensure the input data. This algorithm contains the following
iterations:

For i = 3 To 25
iii = i - 2
If Option1.Value = True Then grdRunData.TextMatrix(7, iii) = C.Cells(18, i).Value
If Option2.Value = True Then grdRunData.TextMatrix(7, iii) = C.Cells(28, i).Value
If Option3.Value = True Then grdRunData.TextMatrix(7, iii) = C.Cells(38, i).Value
If Option4.Value = True Then grdRunData.TextMatrix(7, iii) = C.Cells(48, i).Value

If Option1.Value = True Then grdRunData.TextMatrix(8, iii) = C.Cells(60, i).Value
If Option2.Value = True Then grdRunData.TextMatrix(8, iii) = C.Cells(61, i).Value
If Option3.Value = True Then grdRunData.TextMatrix(8, iii) = C.Cells(62, i).Value
If Option4.Value = True Then grdRunData.TextMatrix(8, iii) = C.Cells(63, i).Value

Next

The iterations start from 3 to 25, i.e. 23 points, which is the maximum
number of points on the same path. Every iteration contains 4 paths as a maximum
allowed number of paths. Each path has two data entries that are final diameters in
mm and the discharge in l/s. As we see in that loop, the efficiency of this loop is O
(n) which is a constant efficiency. It is the best algorithm efficiency.

Another loop is that creates virtual pumps formulations. This means that the
total pump station discharge has to be partitioned into smaller pumps formulation
components that are available in the execution contracts. As example, if the total
pump station discharge is 100 l/s and the contract allows only 40 and 60 l/s pumps,
then it is obvious to use these two discharge pumps formulation components. These
virtual formulations are come from both experience and user demands.
For gf = 0 To 3

If C.Cells(13, 8).Value <= 30 Then Text40(gf).Text =C.Cells(13, 9+ gf).Value Else

Text40(gf).Text="
If C.Cells(13, 8).Value <= 40 And C.Cells(13, 8).Value > 30 Then Text40(gf).Text =

C.Cells(13, 9 + gf).Value Else Text40(gf + 4).Text"=
If C.Cells(13, 8).Value <= 50 And C.Cells(13, 8).Value > 40 Then Text40(gf +

8).Text = C.Cells(13, 9 + gf).Value Else Text40(gf + 8).Text"=
If C.Cells(13, 8).Value <= 60 And C.Cells(13, 8).Value > 50 Then Text40(gf +

12).Text = C.Cells(13, 9 + gf).Value Else Text40(gf + 12).Text"=
If C.Cells(13, 8).Value <= 70 And C.Cells(13, 8).Value > 60 Then Text40(gf +

16).Text = C.Cells(13, 9 + gf).Value Else Text40(gf + 16).Text"=

A Developed Softwae For an Improved… 97

If C.Cells(13, 8).Value <= 80 And C.Cells(13, 8).Value > 70 Then Text40(gf +

20).Text = C.Cells(13, 9 + gf).Value Else Text40(gf + 20).Text"=
If C.Cells(13, 8).Value <= 90 And C.Cells(13, 8).Value > 80 Then Text40(gf +

24).Text = C.Cells(13, 9 + gf).Value Else Text40(gf + 24).Text"=
If C.Cells(13, 8).Value <= 100 And C.Cells(13, 8).Value > 90 Then Text40(gf +

28).Text = C.Cells(13, 9 + gf).Value Else Text40(gf + 28).Text"=
If C.Cells(13, 8).Value <= 110 And C.Cells(13, 8).Value > 100 Then Text40(gf +

32).Text = C.Cells(13, 9 + gf).Value Else Text40(gf + 32).Text"=
If C.Cells(13, 8).Value > 110 Then Text40(gf + 36).Text = C.Cells(13, 9 + gf).Value

Else Text40(gf + 36).Text"=

Next

As we see in that loop, the efficiency of this loop is O (n) which is a constant
efficiency. It is the best algorithm efficiency. The following is a group of loops that
are designed efficiently to fulfil the requirements of the excel file. The later contains
the design properties such as the internal diameter for every pipe type, the design
water duty, pipe class, … etc. It transports them from the design properties file to the
designer on the screen in order to accept, modify, or cancel if it is required.
iii = 0

For iii = 1 To 9
Text13 (iii - 1).Text = C.Cells(iii + 9, 7).Value
Next

iii = 0
For iii = 9 To 17
Text13 (iii).Text = C.Cells(iii + 1, 11).Value
Next

iii = 0
For iii = 18 To 25
Text13 (iii).Text = C.Cells(iii - 15, 20).Value
Next

iii = 0
For iii = 26 To 29
Text13 (iii).Text = C.Cells(iii + 11, 5).Value
Next

After the theoretical calibration has been achieved one can conclude that, all
the algorithms of the presented software are efficient more than 50% and have the
best quality. This is because the program fulfils time requirement, which is half the
way to the complete algorithm efficiency. The rest of the efficiency of the
algorithms which is the memory requirement is about 40 % achieved. This is
because the reserved memory size for the proposed software constants and variables
are so minimized that the available memory size for the user is huge. As a result, the
algorithm efficiency is more than 90 %.

98 Mohamed A. Nassar and Abdelmoez. M. Hesham

5. Snap Shots of Some Sophisticated Field Solved Problems

Figure (6). Two selected screen shots of the software for the complicated networks

A Developed Softwae For an Improved… 99

6. Conclusions

We have proposed software for fully integrated design framework of a multi-

disciplinary approach and cost computations for pressurized pipe lines used in IIP

projects. It can carry out many tasks such as:

• Simulations of flows through the pipe lines implemented in IIP projects,

• Estimates the cost for the all elements of the pipe lines including the pump

stations,

• Prepare the engineering estimates and Arabic version of the contract which

is necessary to biding stage,

• It includes new features to assist Sobek software to extract the date about

the longitudinal sections,

• It gives the ability to users to detect the maximum and minimum water

levels and

• It prepares the necessary files to change all the abstraction points in any

Sobek case.

It has been designed for experts and non-experts alike. The framework is

composed of several modules, grouped around a mutual interface, while being

capable to interact with one another. Some of the used algorithms in the presented

software are reviewed against efficiency. The proposed program is calibrated both

practically and theoretically.

In the future, it may add a module to the software to prepare the necessary

Auto Cad files for layout and longitudinal section of the available paths of the

designed mesqa,

7. References

[1] Lewis A. Rossman, “EPANET 2-USERS MANUAL”, National Risk

Management Research Laboratory, Office of research and development, U.S.

Environmental Protection Agency, Cincinnati, Oh 45268, (2000).

[2] Wallingford Software, “InfoWorks CS Technical Review”, (2009).

[3] StonerSofware, “SynerGEE – ESRI, For City of Leesburg Integration”, (2008).

[4] Dandy, G. A., Simpson, A. R., and Murphy, L. J. "An improved genetic

algorithm for pipe network optimization", Water Res., Vol. 32, No. 2, (1996),

pp. 449–458.

[5] Bhattacharya, B., Lobbrecht, A. H., and Solomatine, D. P. “Neural networks and

reinforcement learning in control of water systems”, J. Water Res. Pl.-ASCE,

Vol. 129, No. 6, (2003), 458–465.

[6] Rao, Z. and Salomons, E. “Development of a real-time, nearoptimal control

process for water distribution networks”, J. Hydroinform., IWA Publishing, Vol.

9, No. 1, 2007), pp. 25–37.

[7] Delft Hydraulics LTD, The Independent Consulting and Research Institute,

“SOBEK210, SOBEK Software and Manuals”, Netherlands,

http://www.wldelft.nl and http://www.SOBEK.nl, (2006).

http://www.wldelft.nl/
http://www.wldelft.nl/
http://www.sobek.nl/

100 Mohamed A. Nassar and Abdelmoez. M. Hesham

[8] Boissonnat, J.D, Yvinec, M., Algorithmic Geometry””, Cambridge, UK, (1988).

[9] Jason. C, Zhiru. Z, “An Efficient and Versatile Scheduling Algorithm Based on

SDC Formulation”, Proceedings DAC 2006, San Francisco, California, USA,

June 24-26, (2006).

[10] Elad H., Seshadhri C., “Efficient Learning Algorithms for Changing

Environments”, Proceedings of the 26th International Conference on Machine

learning, Montreal, Canada, (2009).

[11] Hendrik B., Jan S., “Efficient Algorithms for Decision Tree Cross-Validation”,

Journal of machine Learning Research, Vol. 3, (2002), pp. 621-650.

[12] Ning Z., Zhixiong C., Guozhen X., “Efficient Elliptic Curve Scalar

Multiplication Algorithms Resistant to Power Analysis”, Journal of Information

Sciences, Vol. 177, (2007), pp. 2119-2129.

A Developed Softwae For an Improved… 101

 برمجية مطورة للتصميم الهيدروليكي للمسقى المحسنة

 **وهشام عبد المعز محمد عبد الجواد *محمد أحمد نصار

 nasserzagazig@yahoo.com ،ق ي زاق زلا ةعماج – قي ز اق زلاب ة سندلها ةيلك- هايلم ا نشآتم و هايلم ا مسق *

 habdelmoez@yahoo.com ،نا ولح ةعماج – ة ي رطلم اب ة سندلها ةيلك– ةيسد نلها تا يضا ي رلا و ا قي زيفلا سمق **

2eFم ,÷sı› ¾ ٩٢L٧L5و ؛م٠١٠٢¸e ,÷sı› ¾ ٨L١Lم١١٠٢E

˛¦,Sא »„m„¸›א ãzıi o,¦9ð: y ¿a,í,i õ,9g ˛e õ2¦2ç «,„a9א,زs ãe,9›א ozœ 2مã: . ث حبلا ص خمل

@e2: «א,,maو ¿g ãð> ¿a א‹÷¸3,» :=93ن ozœو ، ãQázzS9ط אzQ›א « אذ y,›3,» א¸u 9„QQ=›

«,gçو ¤ı=¿ çi ãðZא ¿a o,„S5 אãz› ã¦, و,g õ2>,ma «22אaو ،ãáı=¿ عא 9í;i «,a,Qgو ã¦9í,fiو ã„m„¦,

‹a,íz¿ אœ ˛s,ş ,¿ãS„2,و‹„3„, א‹=9ðs ¾ @e2ط א5s ¿a ¿„i,íeل <ç,m א‹9zQط אو Kل,Q2=¥£א

ã„eא,zŞא «,a9ı2S9 אªí ð¦א,s 5¦9z=i ً ,Q¦i 9مã¦و ، ã¦,gz›א «,a,Qg ˛=> ã3¸÷›ط א,ãí ,„¾ ¾

ã„ı2á›א

˛ı> ¿a,íz›א אzœ @„¸ð: y 2eو ،ã„m„¦,›א ¿Q›א ãð> ãðãí »›zsو «,a,QQ› אو ¿„i,íe9ط אðs çi ,„Qe,

2ç9¦£ aíi 9مI2Sא ¿a و K,Qa ¾ ã„a9ã›و<,» א,÷Sא ¿a ?2א> אو 22¦ yz› אو EIIP y,›9¦, אð: ع و ,÷aF

«,e,Q: 9دç5 وäa ، õ2د> y¦,2ç م¿=ı¦ y,›9¦, אð: عو ,÷a نe «,A9I2Sא ozœ 5s ¿=z¦ ➢2,وa ¿a,í,i

¿a õ2د> ¿„s9د :,אç وو ،عو ,÷Sא @b,zS 2د> ˛¦,a ¿zãa 9دç و و ، y,›א ã3¸÷› ãáı=zSع א,eeא ¾ õ2د>

ç,ms »›ذ çi ãe,ge,i ¿a,íz›9م אã¦א وzœ Kz„áz=›9د אã2› ,ã¸b ,ga2אz=¥א ¿u ½› אو «,zQSא

z„áz=›9د אã> v,zi »›zsو ، ã3¸÷›א vא¿çiو ¿Q›א ãðZ ã¦د,Q=e£א ¿í9אŞذ‹« א ¾ ,ç ã„›,¾eא‹=3,‹„¤ א

K»i9¥ 5äa õ,9g÷a ã„3„›2,و„œ ¿aא,i ,a 5a,2=›א ã„í,3aiو ،ã¦,QSא y,›א õ, א زو «,ág9אa «,¸ıð=S ,ãeو

ª>9› 2eو ً ,ã¸ma ً y אzœ ,,¸=sא א‹9g9a ¿a,ízع א‹¸z½، و92i ˛ı> a:,¦,2a אe,mS˛ אãQQQS ¦2و ¦,

2e92 وi õv,ás «,2e ,Qs ً، :9אi 2„ç @e½ א‹z=,¦¿ א‹½ ga2e, א‹a,íz¿ و:ı« א‹½ gi,m> y, ¦2و¦,

 و9çد

Kã„i,m2א ç¿a9„Ş9א<2 אe مא 2z=¥,i «,„aא”9א,ز

mailto:nasserzagazig@yahoo.com
mailto:nasserzagazig@yahoo.com
mailto:nasserzagazig@yahoo.com
mailto:habdelmoez@yahoo.com
mailto:habdelmoez@yahoo.com
mailto:habdelmoez@yahoo.com

102 Mohamed A. Nassar and Abdelmoez. M. Hesham

