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ABSTRACT. This paper uses the perturbation method of multiple scales to obtain a closed form solution 

for the reflectance of rugate filters. The computational speed of the method is orders of magnitude higher 

than that of others. This allows studying the effect of filter’s profile modifications and gives insight on the 
effect of the parameters involved. In addition to that, the method could be used to synthesis the spectral 

response of rugate filters. 
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1. INTRODUCTION 

Rugate filters are used extensively as antireflection coatings.  The usual procedure  

of calculating their spectral response is to utilize their stack counterpart. Thus 

partition the filter’s profile to very thin layers and employ the ABCD characteristic 

matrix approach [1,pp.45]. As the number of partitions increases the number of 

multiplication required increases and thus a long computational time is needed. 

Methods proposed to alleviate this computation burden have been proposed by 

tackling the problem from periodic structure point of view. In [2], coupled-wave 

theory has been employed and gives results in agreement with the conventional 

characteristic matrix method. The drawback of applying this method is in using 

unclearly justified approximations. In addition to that, this method cannot easily be 

adapted to consider modulating the sine-wave profile with other slowly varying 

functions. This paper uses one of the small amplitude theories referred to as the 

perturbation method of multiple scales to analyze these types of filters. This is 

indeed one of the five different methods discussed in [3] for the analysis of mode 

coupling of two guided modes. The perturbation method of multiple scales was used 

in [4] to treat propagation of electromagnetic waves in corrugated waveguides. Its 

application to the present problem will not only give a fast and accurate method of 

evaluating and assessing the spectral response of an arbitrary refractive index 

profile, but also open the way forward for synthesizing the spectral response, which 

requires further exploration, however. In the next section, formulation of the 

problem in terms of the perturbation method of multiple scales is given. In Section 

3, the incident and reflected interacting waves are derived. Some examples and 

validation of the method are presented in section 4. 

 
2. FORMULATION 

The problem being considered is the propagation of plane electromagnetic waves in 

a medium whose relative permittivity varies periodically with the depth of the 

structure, assumed to be L, as shown in Figure 1. The outer face and substrate are of 

refractive indices n0  and ns, respectively. The 
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Fig. (1). Problem geometry. 
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The wave equation governing the electric field can be derived from Maxwell’s 

equations and written as 

2 E −    E +  2    (z) E = 0 

A normal incident z-directed plane wave is considered with 

Substituting in Eq. (1) results in 

(1) 

E = â x   Ex (z). 

 

 

where: 

2 E + k2 E = 0 (2) 

k2 =  2  
or 

o r (z) 

kz = 
~ 
ko n(z) (3) 

 

Here, n(z) is the refractive index of the rugate filter considered here to take a general 

form 
 

n(z) = na ( 1 +   sin (K1 z)) 

Where na is the average unperturbed refractive index,  is the perturbation index and 

K1 is the wave number of the refractive index profile given by 
 

K = 
4 

n 

1 

 
(4) 

1 is the designed wavelength or wavelength at which peak performance is expected. 

Now kz in Eq. (3) can be casted in the following form 

kz = 
~ 
ko na ( 1 +  sin (K1 z)) 

=  ko  ( 1 +   sin (K1 z)) (5) 

The governing equation (2) is a homogenous second order differential equation with 

variable coefficients whose solution is sought via the perturbation method of 

multiple scales. 

 

3. WAVE INTERACTION EQUATIONS 

The reflectivity or reflectance of a periodically varying refractive index profile is 

due to an interaction between incident and reflected waves. The derivation here is 

presented by expanding the field in powers of  in the form 

Ex (z)  =  Ex
(0) (zo , z1)  +   Ex

(1) (zo , z1) + …. (6) 

Where zo = z is a fast varying scale, and z1 =  zo is a slowly varying scale. 

Expressing the derivatives in terms of zo and z1 by using the chain rule and 

substituting in Eq. (2), then equating coefficients of equal powers of  to obtain 

   2 

o o r (z) = 

x 

o 

a 
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2 E 

 

 
(0) 

O (0) 
 

 

 (0)   x + k2 E = 0 (7) 

 z
2 o x 

O (1) 

 2 E 
(1)  2 E 

(0) 
  x + k 2 E (1) =  − 2  x − k 2 sin (K z ) E (0) (8) 

 z 
2 o x 

 zo  z1 
1 o x 

Note that Eq. (7) corresponds to unperturbed system whose general solution is given 

by 

Ex
(0) (zo , z1) = A (z1)  e− j k o  zo

 + B (z1)  e j k o  zo
 (9) 

Eq. (9) suggests propagation of two contra-directional traveling waves. The 

functions A(z1) and B(z1) are slowly varying functions representing the amplitudes 

of the incident and reflected waves, respectively. They are determined from the 

solvability conditions of the first order problem. 

By substituting Eq. (9) in (8), we obtain 

2 E 
(1)  (1) −   x + k2 E = j 2 k (A(z ) e j k o zo − B(z ) e j k o  zo  )  − 

 z2 
o x 

 
2 

    o ( ej K1 zo − 
2 j 

o 

 

 

e− j K1 

1 

 

 

o ) (A(z1 ) e 

 

− j k o zo + 

1 

 

 

B(z1 ) e 

 

 

j ko 

 

zo ) (10) 

 

The  primes  denote  differentiation  with  respect  to  z1. Had we attempted a 
 

straightforward expansion (corresponding to 
 

 

 z1 

= 0 ), we would found that it 

breaks down when the following resonance condition is satisfied 

2 ko =  K1 (11) 

This is what is usually referred to as the Bragg condition. However, it is not 

necessary that this condition be valid exactly, it is sufficient if the phase  j (2 ko - 

K1) has a slow spatial variation. The nearness to resonance is measured by a 

detuning parameter , defined by 

2 ko - K1 =   (12) 

Finding a particular solution of Eq. (10) would lead to secular terms; i.e., solutions 

that are proportional to z e jk0  z0   . This means that Ex
(1) would soon become greater 

than Ex
(0) 

and, consequently, the perturbation expansion in Eq. (6) for Ex is not 

uniform and it breaks down. To eliminate the secular producing terms from the 

right-hand side of Eq. (10), we set the coefficients of e jk0  z0  equal  to  zero  and 

arrive at the following solvability conditions for the first-order problem 

o 

o 

o 

z 
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Invoking the solvability conditions in Eq. (9) requires 

j 2 ko 

or 

2 

A(z1 ) + o B e 
2 j 

j (2 ko − K1) zo = 0  
(13) 

 

 
and 

A(z1 )  = o 
4 

B ej z1 
(14) 

−  
k 

2

  − j (2 k  − K ) z 

j 2 ko 

or 

B (z1 ) − o A e 
2 j 

o 1 o = 0 (15) 

B(z1 )  = o 
4 

A e− j  z1 

ko 

 

(16) 

Equations (14) and (16) are first order coupled equations with 

4 
as a coupling 

coefficient. They can be solved using any standard differential equations solver to 

determine the amplitude reflection coefficient r , which is the ratio of the backward- 

propagating to the forward-propagating amplitude. However, to obtain a  closed 

form formula for the reflectance, these two equations are decoupled by 

differentiating equation (14) and substituting from Eq. (16). The result is a second 

order differential equation given by: 

A  − 

Whose solution is given by 

j  A − ( 
ko )2 
4 

A = 0 
 

(17) 

A(z1 ) = e 

 in equation (18) is given by 

 = 

j 
 

z 
2 ( C1 e−  z1 + C2 e z1 ) 

 
(18) 

 

 
(19) 

 

The constants C1 and C2 are determined from the conditions imposed at the 

boundaries of the filter. The solution for B(z1) can be obtained from Eq. (14), and 

may be written as 
4  −   j z1 

B(z1 ) = 
o 

[ −C1 ( − j  ) e 
2 

z1 + C ( + j ) e  z1  ] e 2
 

2 
(20) 

(ko  )2  
− (  )2

 

4 2 

1 

k 
2 
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Actually there is no need to impose two conditions to evaluate C1 and C2 since the 

amplitude reflection coefficient is given by the ratio of the backward propagating 

wave to the forward propagating wave of Eq. (9). To find the ratio of these two 

constants, we take the condition at the filter-substrate interface at zo = L. The 

reflection coefficient, as defined above, when evaluated at zo= L may be written also 

in terms of filter’s refractive index profile at zo= L and the that of substrate layer, 

i.e., 
 

r 
zo = L 

= rs = 
n (L) − ns 

n (L) + ns 

= 
B ( L) 

e 
j 2 ko L 

A ( L) 

 
(21) 

 

Upon using Eqs.(18) and (20) into Eq. (21) one can obtain 

C2 =
 

 
 

( ko 

4 rs + ( − 
 

j ) e 2 j K1 L ) 
 
 

− 2 L 

C1 (− 
ko r 
4 

s + ( + 

e 

j 
 

) e j K1 L ) 
2 

(22) 

The amplitude reflectivity at any point down the structure can now be written as: 

r(z ) = 
B ( z0 ) e 

j 2 ko z0
 

 

0 A( z ) (23) 

 
 

After some manipulation, Eq.(23) can be written in the following form 

− ( − j 
 ) + 

C2
 ( + j 

 )e 2 L 

r(z0 ) = 
2 C1 

ko  (1+ 
C2

 

4 C1 

2 

e 2 L ) 
e j K1 z0 

 

(24) 

The recursive Fresnel reflection formula [4] could now be used to find the reflection 

coefficient,  at z = 0: 

ra   + r 
= 0

 

  = o  (25) 

1 + ra 
 

zo = 0 

 

Where ra is the reflection coefficient at the outer interface, given by 

r = 
n0 − n (0) 

 

 
(26) 

n0  + n (0) 

r 

a 
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L 

 

 

The power reflection coefficient, or reflectance, is given by 

R =  * (27) 

Various variations of the refractive index profile can be assessed by evaluating the 

reflectance, as defined in Eq.(27), with respect to the wavelength. 

 
4. ILLUSTRATIVE EXAMPLES 

To validate the method presented in this paper we use the same example given in 

[2]. The parameters used are 100 – cycle of rugate with  = 0.05, 1 = 0.55 µm, ns = 

1.52, and no = 1. The spectral response of power reflection coefficient, R, versus the 

wavelength,  is shown in Fig. 2. The result is in excellent agreement with that  

given in [2] obtained in much less time when compared on the same machine. This 

example corresponds to uniform corrugation of rugate filter. Nonuniform 

corrugations could also be used. A variety of nonuniform perturbations can be 

studied and handled by the method. A notch–like response may be obtained by 

inverting the filter’s profile at its mid-point. This is achieved by letting  to take the 

form: 

 

 

 (z  ) = 
 o

 0  z1  
2
 

 
 (28) 

1  
−  
 

L 
 z  L 

2 
1 

The effect of this is shown in Fig. 3. Using the profile given in Eq. (28) means that a 

phase reversal at the middle of the structure has been made. This opens a narrow 

sharp transmission at the resonance wavelength. This is look a lot like the difference 

mode radiation pattern obtained in antenna arrays [6,pp.245.]. 

o 
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Fig. (2). Spectral response of uniform rugate. 
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Fig. (3). Notch-like spectral response of nonuniform rugate. 

 

 
5. CONCLUSIONS 

Perturbation method of multiple scales can be used with arbitrary filter’s profile to 

assess the response of rugate filters. In addition to its computational speed the 

method offers an alternative platform for synthesizing rugate filters. Important 

applications, notably wave division multiplexing, immerged by obtaining spectral 

response to suite the required application. 
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5Z÷i 5> ̨ » a «,i9=ma=22د9Qz1› õل <1 אذ  ã1¤1e ¿a c91we2م אz=m; ãe,9›א ozœ . ثحبل ا صخلم   

 ،,œys ¿a ˛1>í ãe,9›א ¾ ,ş=Sא c91w¿› ã=i,m£א ã>.m›א Krugate «,zu.Sא ¿a ãe,b› س א,Z2í£ @1xa 

،a¤1=zS5 אaא‹92א yi;; ¿> õ.Zé ˛b2i ,Qs ,u.S5 אZu ̨ 1> ã¤şbS5» אi22=›א yi;; ãw2,אi ,Qmiאzœو 

Krugate «,zu.Q1› ã=¤=b›א ãi,c=w£א Q=QQ=› ã¤i.b›א ozœ 2مz=m; نí ¿Zçو 
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