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ABSTRACT. This paper identifies the main types of solutions of Boolean equations as subsumptive
general solutions, parametric general solutions and particular solutions. The paper offers a tutorial
exposition, review, and comparison of the three types of solutions by way of two illustrative examples
solved by both map and algebraic techniques. Map techniques are demonstrated to be at least competitive
with (and occasionally superior to) algebraic techniques, since they have a better control on the
minimality of the pertinent function representations, and hence are more capable of producing more
compact general parametric and subsumptive solutions.
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1. Introduction

The topic of Boolean equations has been a hot topic of research for almost two
centuries and its current importance can be hardly overestimated. Boolean-equation
solving permeates many diverse areas of modern science such as biology, grammars,
chemistry, law, medicine, spectrography, and graph theory [1]. It is also an
indispensable tool in operations research [2], the cryptanalysis and breaking of
ciphers [3], Boolean satisfiability (SAT) problem solving [4], the synthesis,
simulation and testing of digital networks and VLSI systems [5, 6], output encoding
and state assignments of finite state machines [7], and automatic test-pattern
generation [8].

There is a huge number of methods for solving Boolean equations, covering
the general case of big Boolean equations, or the special case of bivalent, switching
or truth equations (See, e.g., [1-3, 5, 9-26]). Most prominent among these methods
are the two important classes of algebraic methods and tabular or map methods. The
main types of solutions of Boolean equations can be identified as subsumptive
general solutions, parametric general solutions and particular solutions. In a
subsumptive general solution, each of the variables is expressed as an interval based
on successive conjunctive or disjunctive eliminants of the original function. In a
parametric general solution, each of the variables is expressed via arbitrary
parameters, i.e., via freely chosen elements of the underlying Boolean algebra. A
particular solution is an assignment from the underlying Boolean algebra to every
pertinent variable that makes the Boolean equation an identity.

This paper is a tutorial exposition, review, and comparison of the use of algebraic
methods and map methods in obtaining the main types of solutions of Boolean
equations. We will consider two algebraic methods, both due to Rudeanu [9, 22], and a
map method that does not rely on the use of the classical Karnaugh map (CKM) but on
the use of the variable-entered map [20, 23, 25-30]. Though the variable-entered
Karnaugh map (VEKM) is typically classified among (and used herein as a
representative of) map methods, it is not really a purely-map method, but it is semi-
algebraic in nature. The VEKM is the natural map for representing finite big Boolean
functions that are not necessarily two-valued functions [26]. A Boolean function of n
variables has 2" VEKM representations (depending on the choice of map and entered
variables) ranging from a CKM (n map variables and 0 entered variables), and a purely-
algebraic expression (0 map variables and n entered variables). The VEKM methods
therefore include purely-algebraic methods as a special case. Hence, they can always
take full advantage of the results provided by the algebraic theory. Moreover, they have a
better control on the minimality of pertinent function representation.
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The rest of the paper is organized as follows. Section 2 views the first
algebraic method of Rudeanu presented in his pioneering and seminal text [9], while
Section 3 discusses use of the VEKM in obtaining a subsumptive general solution of
Boolean equations. Section 4 studies the second algebraic method of Rudeanu
presented in his paper [22], while Section 5 assesses it in terms of the results of
Section 3. The second algebraic method of Rudeanu in [22] is shown to secure
minimality over a set of chosen coefficients and not over the more basic set of
pertinent variables and free generators. Therefore, this method is not always as
efficient as the VEKM method. Section 6 adds a discussion of using the VEKM in
obtaining a general parametric solution of Boolean equations. In Sections 3, 4, and
6, we offer a tutorial exposition of the subject by way of two illustrative examples
that produce compact general solutions and then expand them to particular solutions.
Section 7 concludes the paper.

2. First Algebraic Method of Rudeanu

In this section, we review the classical technique of constructing subsumptive
general solutions for a Boolean system of equations. More details can be found in [1,
20, 23], and a formal proof is available in [9]. To distinguish this technique from
that in [22], we call it the first algebraic method of Rudeanu, while the technique in
[22] is labeled as the second algebraic technique of Rudeanu.

An n-variable Boolean system on a Boolean algebra B is a set of k simultaneously
asserted equations. This system is equivalent to the single equation

fiX)=0, (1)

where X = [Xy, Xa,....., Xn]" is a vector of n components X; each belonging to
the Boolean carrier B. The subsumptive solution is obtained by constructing the
eliminants

(X1, Xay ooy Xn), oo, B (X, Xy oo oy Xig, X0), o, T2 (X, X2), f1 (Xa), To
by setting f,= f and using the recursion
fi(Xl, ) O Xi,l) = (f./ i) A (fi / Xi), i=n,n-1, ..., 1. (2)

Note that fi1is the conjunctive eliminant of f; with respect to the singleton
{Xi} [1]. This means that fi.1 is a conjunction of the two ratios, subfunctions, or
restrictions

fi i=filXy, X2, ..., X, 0), (3)
fil Xi=fi(Xy, X2, ..., Xi1, 1), (4)
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obtained from f; by setting or restricting X in it to 0 and to 1, respectively.
For short, these two ratios will be denoted by f; (0) and f; (I), respectively.

The classical method for producing a subsumptive general solution is by
successive elimination of variables, a technique transforming the problem (1) of
solving a single equation of n variables to that of solving n equations of one variable
each. The solution requires a separate consistency condition.

fo=0, (5a)

plus expressing each of the pertinent variables as an interval of functions
ofthe preceding variables, namely:

SiXy, X2, 0y X)) < Xi < Xy, Xo,oL0, Xi), 121, 2,..,0. (5b)

where the s; and t; functions can be expressed as completely specified
Boolean functions, namely

si = fi(0) (6a)
ti= (1) (6b)

The form of the general solution above allows all the particular solutions of
(1), and nothing else, to be generated as a tree. Since the method of this section is
superseded by the second algebraic method of Rudeanu [22], we will not discuss it
any further. The examples on this method available in [1] demonstrate that this
technique is not only tedious, but it also fails to produce compact solutions.
However, it was necessary to introduce this technique herein since it is the basis of
the improved techniques in Sections 3 and 4.

3. VEKM Subsumptive Solution

To leave room for further simplification, the s; and ti functions in (5b) are expressed
as incompletely specified Boolean functions (ISBFs) in the interval form [1]

fi(0) i (1) < si < fi(0), (7a)
i(1) £ t < fi(0) i(1). (7b)

Now, these expressions can be adapted for VEKM manipulation by
converting them into the incompletely-specified or don't-care expressions [20, 23]

si=£(0): (1) d(f(0)), (7¢)
ti= i (1) d(fi(0)). (7d)
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The VEKM is well suited for a divide-and-conquer implementation of the
complementation, ANDing, ORing and minimization operations needed in (7c) and
(7d). The procedure is well illustrated by the following two examples.

Example 1:
Let the function f(X1, Xz, X3):B,* —B4 which satisfies (1) be given by
flx1, X2, X312 3 X1X2 3, (8)

This function is represented by the VEKM of Fig. (1), which actually serves
as a natural map for Boolean functions over Bs. The detailed VEKM subsumptive
solution is obtained via the VEKMs in Fig. (2). The final subsumptive solution is
given by the compact form:

1X2 £ 351,

0=0. (9)

X1

X2

f(X1,, X2, Xa)

Fig. (1). A VEKM representation of the Boolean function f; = f(X3,X2,X3) of Example 1, as expressed
by equation (8).
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X1 X1
a 1 a a 1 1 1
X2 X2
f3(03) fi(13)
X
X1
« V
i@ | a 1 a J@ 1 1
X2 X2

s3 —aV xXiXo s=1

X1
a 0 0 0
X2
A(xLx2)
X1 X1
a 0 | 1 1
S2(02) S (12)
X1 X1
a 0 | 1 1

S$2=ax n=1
X1
| 0 0

Ji (x1)
0 1 0 1 0
Ji(0y) Ay s1=0 =1 £

Fig. (2). Steps of the VEKM subsumptive solution for Example 1.
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Fig. (3). Expansion tree (reduced to an acyclic graph) for obtaining all particular solution of

Example 1 from the general subsumptive solution (9).
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A list of all particular solutions is neither compact nor insightful as a general
solution. Such a listing is produced via expansion trees from the general solutions.
Figure (3) shows the expansion tree used in producing all 21 particular solutions of
(2) for f= 0 from the general subsumptive solution (9). To save space, we combined
common nodes in the tree, thereby reducing it to an acyclic graph.

Example 2:
The function f(X1, Xz, X3):B35>Bisgiven by
fiXs, X2, X3) = ab 31Xz XoX3 3 2 3 13, (10)

is represented by the VEKM of Fig. (4), which actually serves as a natural map for
Boolean functions over Bis. The detailed solution is obtained via the VEKM in
Fig.(5). The final subsumptive solution is:

b<sg,
0<2<ab,
0<1<0,
ab=0. (11)
X3
\
b avb avb a
—
X 1 1 1 1
L
X2

[ (X Xz, X5)

Fig. (4). AVEKM representation of the Boolean function f; = f (Xy, X;, X3) of Example 2.
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X2 X,
b avb a ab
X 1 1 X1 o] 0
S5 (03) £
X p. G}
N ah v av ab v
abv d'(b) d(é v b) d(b) d(ﬁ \% b)
Xl d(l) d(]) Xl d(]) d(l)
s3=b z=a
X2
ab ab v ab
X1 1
Sr (X1, X2)
ab ab v diab) abv abv
ab d(ab) ab
X 1 X1 0 X d(l) X1 d(1) X1 1
£(0) fl s2=0 t=avb Ji(X0)
ab
0 || de@b) || d@b) ||_ab
J10) 11D =0 u=0 f

Fig. (5). Steps of the VEKM subsumptive solution for Example 2.
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Figure (6) illustrates the acyclic-graph production of all 8 particular solutions of
equation (11) for f = 0 from the general solution (11). Here, the consistency
condition (ab = 0) made the underlying Boolean algebra collapse from the
hypercube lattice of Bss in Fig. (7) to the cubic lattice of Bg in Fig. (8) [23, 26].

0<,:<0
X:1=0
0<,<avb)
> > =<
i i 1
o Q o
b<ss
Xs=b X3

Fig. (6). Expansion tree (reduced to an acyclic graph) for obtaining all the particular solutions of

Example 2 from the general subsumptive solution (11).

avb, 1
a 4 avb
T e
ab a«—»f#
a+b avb
ab 4 b
ab a
o s

Fig. (7). A hypercube lattice indicating the partial ordering among the 16 elements of Bs.
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at+tb=aVvb a@vbpb=1

0=ab ab=(a b)
Fig. (8). The lattice in Fig. (7) when collapsed under the condition ab = 0.

4. Second Algebraic Method of Rudeanu

Rudeanu [22] proposed a second algebraic method for solving the Boolean equation
f(X) =0. The function f(X) = fn(X) of n variables is written as

fn(X) = v T v (12)

where the coefficients , , are functions
of the (n-1) remaining variables (X/Xn) = (X1, Xa, ..., Xn.1). The subsumptive solution
for in terms of the other (n-1) variables is provided by the
double inequality
- (13)

provided the following consistency condition is satisfied

fra(Xl ) = Y% (14)
Thus the solution of (12) is provided partially by (13) for , and is reduced to the
solution of (14) for the remaining (n-1) variables. The iteration of the above
procedure leads to a successive elimination of variables and the production of a
subsumptive solution for each variable in terms of the earlier variables, in addition

to a final consistency condition that involves no variables but involves constants of
the underlying Boolean Algebra.

Example 1 (revisited):
We apply the iterative procedure (12)-(14) to the function in (8)(of Example 1) to obtain
F=13(X1, X2, Xa) 12 3XiX2 3=A3X3B3 3 Cs, (15a)
C3=12,A3=0, B3 1X2,
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( XX2 < X321, (16a)
f2(X1, X2)=A3Bz C3 1 2=A2X2 B2 5 Cy, (15b)
B> 1, A2=C2=0,
12X2 1, (16b)
f1(X1)=A2B2C2=0=A1X1B: 1C1, (15c)
A1=B:;=C1=0,
0 < X< 1,(16¢)
fo=AiB1C1=0
0=0 (16d)

Equations (16a)-(16c) constitute the subsumptive solution, while equation
(16d) is the final consistency condition. These equations are exactly the ones in (9).
Here, the second algebraic method of Rudeanu produces the same solution as the
VEKM technique.

Example 2 (revisited):

We apply the iterative procedure (12)-(14) to the function in equation (10) (of
Example 2) to obtain

f3(X1, X2, X3ab 1 b 2) X3 b 2b 1 3ab
=A3X3 B3 3C;3, (17a)
Az ab 1 b 2,Bs b 2 b 1,C3= ab,
sbaib,bzazab b1,
Hence, the solution for Xz is

b 2b 1< 3:<abb ; 1 2), (18a)
with the consistency condition
f2(X1, X2) = A3 B3 C3
ab 1b 2 b 2b 1)ab
ab1bi11Xabi1b 2b 1X2ab
1bb 1)X2ab 1bi1 b 1ab
1 bb1)X2 b 1ab
=AX2 B2 5 G, (17b)
A2 1b b B2=0, C2 b 1ab,
2a1abbiiababaibiab.
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Hence, the solution for X, is
B2<2<>,
0<2<aib;ab,(18b)
with the consistency condition
fi(X1)=A2B2 C2 b 1 ab=AiX1 B1 1Cy(17c)
Ai1b,1=0,Ci=ab,

1=ab,
Hence, the solution for X, is
Bi<1<y,
0 < 1< ab, (18c)
with the consistency condition
fo=A1B1Ci=ab=0, (18d)

Relations (18a)-(18d ) can be combined to give the subsumptive solution:
b 2b 1 <3< abb 1 12)
0<:;<aibjab)
0< 1<ab
ab=0. (19)

As an afterthought, the solution (19) can be refined by applying the condition (ab =
0) to the preceding double inequalities. A result of this step is that (0 < X3 < 0),
which means that (X; = 0); a condition that can be applied to the inequalities of X3
and X, to obtain: b2<3<b ;)

ab=0 (20)

But still even after this simplification, the solution (20) is still less compact than its
equivalent one in (11). The particular — solution tree generated by it (see Fig. 9) is
more involved and tedious to produce than the corresponding one in Fig.(6).
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0<X;<0

X1=0

0<X2<@Vb)

b<3<vb bs<3<vb bvb<3<bVv b bvavb=<3<bvVvb

X3=b 3 X3=b 3 X3=b 3 X3=b 3

Fig. (9). Expansion tree for obtaining all the particular solutions of Example 2 from the general
subsumptive solution (20).

5. An Interpretation of Rudeanu Second Method

Rudeanu Second Method produces a sequence of equationsfi=0, (i=ndowntoi=
0), wherethe function fi= fi(X1, X, ..., Xi-1, Xi) is

fi=AiXi Bi i Gi=(A G)X(BiG i (21)

The function f; can be represented by the VEKM in Fig. (10) in which the
subfunctionsfi(1;) and fi(0;) are:

fi(1i) = fi(Xs, Xz, ..., Xi-1, 1) = Ai G, (22)
fi(0i) = fi(X1, X2, ..., Xi1, 0) =Bi G, (23)
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Xi

fi(0) =BiCi fi(l) =AG;

Fig. (10). A VEKM representation of the function fi = fi (X4, Xy, ..., Xi).

Now employing the incompletely-specified definitions (7¢) and (7d) for s; and ti, we
obtain

si iiBid(Bi G) (24)
ti i i d(BiG) (25)

Figure (11) displays conventional Karnaugh maps for s; and t; as functions of the
coefficients A, Bj, and C;. It indicates that we can simplify the expressions of s; and
ti to

si = B;, (26)
t (27)

U s D N i
ounEfinGn
C:: u d d d C:: d u_dj d

5 | 5 |

I I

If:AI' S = B‘;

Fig. (11). Conventional Karnaugh maps of sjand t;as functions of A;, Biand C;.
and hence, we can replace (5b) by:

Bi< i< i=n,(n-1),..2,1 (28)
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In agreement with formula (13) of Rudeanu Second Method. We note that the
freedom allowed by the conditions in (7) is not fully utilized in Rudeanu Second
Method in general. In fact, this method strives to achieve local minimality over all
possible choices of the coefficients Ai, Bi and Ci. This kind of minimality is sub-
optimal compared with global minimality over the underlying set of variables X1, Xa,
..., Xj and algebra generators a and b, that is suggested by (7) and fully employed in
our subsumptive VEKM solution (Section3). Though the Rudeanu Second Method is
suboptimal, it achieved the minimal solution for the example in [1, 20] and for
Example 1 herein. However, it failed to obtain minimality for our Example 2.

6. Parametric General Solutions

Brown [1] proved that n parameters are sufficient to construct a parametric general
solution of an n-variable Boolean equation g(X) =1, where g: B"—B. He proposed a
procedure for constructing such a solution using the fewest possible parameters, pa,
P2, ..., pk, Which are elements of B, where k < n. In [25, 26], we adapted this
procedure of Brown into a VEKM procedure as follows:

(@) Construct a VEKM representing g(X). Such a construction is achieved
via a Boole-Shannon tree expansion [1]. If the original Boolean equation is in the
dual form f(X) = 0, then construct a VEKM for f(X), and complement it cell-wise
[27] to obtain a VEKM for ¢y y_ g(x),

(b) Expand the entries of the VEKM of g(X) as ORing of appropriate atoms
of the Boolean carrier B, or equivalently as a minterm expansion of the free Boolean
algebra of B.

(c) If certain atoms of B do not appear at all in any cell of the VEKM for
g(X), then these atoms must be forbidden or nullified. Such nullification constitutes
a consistency condition for the given Boolean equation.

(d) Construct a VEKM for an associated function G(X1, X2, ..., Xn; P1, P2, ...,
px). This VEKM is deduced from that of g(Xi, Xz, ..., Xn) through the following
modifications:

(d1) Each appearance of an entered atom in the VEKM of g is ANDed with a
certain element of a set of orthonormal tags of minimal size. An
orthonormal set consists of a set of terms Ti, i =1, 2, ..., k, which are
both exhaustive (T1v Tav ...vTk = 1) and mutually exclusive (TiT; =0
for1<i<j<k).

(d2) Each nullified atom is entered as a don’t care in all the VEKM cells.

(e) The parametric solution is

Xi = The sum (ORing) of the 2™ cells constituting half of the VEKM in which X; is
asserted (Xi=1), i=12,..n. (29)

(f) (F) Apply a VEKM minimization procedure [28-31] to recast (29) in a
minimal form.
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Example 1(revisited):

We apply the aforementioned technique to the function g in Fig. (12). Which is the
complement of f given by Eq. (8) or Figure (1).Steps of the solution are illustrated
by Figs. (13 and 14), where the set of orthonormal tags (p1 2p3, p1 2 3, piPPps
pip2 3, 1Pp2p3, 1p2 3, 1 2)isused for atom aand the set of orthonormal tags (pz

3
2, p2ps3) is used for atom . The final parametric solution is simplified via the
VEKMs in Fig. (15) and are given by

X1 1 2 1psapip2 3 23

X212132323

X3 1p2p3, (30)
Together with the consistency condition
0=0 (31)
Xy
a a 0 a
,_
X3 a 1 1 1
[ —

L %

g =
Fig. (12). A natural map representation of the Boolean function g, the complement of the function f
in Fig.(1).
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X1

[ 1

g (X1, X2, X3,)

Fig. (13). Entries of the map for the function g in Fig.(12) expanded in terms of atoms of B,or
minterms of FB(a).

X1
api2ps apiz2s 0 apip2s3
a1p23 a2 a1p2p3
)(3 a pi1p2p3
23 2 2 P3
X2

G (X1, X2, X3; p1,p2, pa)

Fig. (14). Each appearance of an entered atom in Fig.(13) is ANDed with a certain element of a set
of orthonormal tags.
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P1

165

P2

1P3 apip2 3 2

X2 12 1 2 3 23
P1
T
1
:’ 1
P2
X3 1 P2p3

Fig. (15). VEKM expression of the parametric solution.
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Xi=pipa VpupsVapippa VapaVips

dRVapvVip
avpp
o~ I .
P :E]’_z"/ | \\H_
-~ ]% ml=d p=d
\ T
| "
avap am apsvap;
i Ps ip
avap ivps
]

" :.‘:IO =1
[

Fig. (16). Tree used to deduce all 21 particular solution of (9) from the parametric solutionn (30).

Figure (16) shows the tree used to deduce all 21 particular solutions from the
parametric solutions (30). These are the same solutions as those in Fig.(3). It can be
seen from Figure (14) that the particular solution corresponding to tagging atom a
with tag p1 2ps and tagging atom with tag p2 3 iS X1 = 0, X2 = X3 . This solution
must satisfy

p1 2p3a =a, (32a)
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P23, (32b)

or equivalently
a<pr 2p3 (33a)
< p2 o3 (33b)

Figure (16) demonstrates that this solution is the parametric values indeed obtained
for the parameters {a < p1< 1, p2, 3 = a}, which satisfy (32) and (33).

Example 2 (revisited):

We apply the VEKM procedure to the function g in Fig. (17) which is the
complement of f given by Eq. (10) or Figure (4). The main step of the solution is
illustrated by Fig. (18), where an orthonormal set { , } is used to tag appearances
of each of the three asserted atoms b, b, and ab .The parametric solution is given by

X3 b ,
X2ba,
X1=0, (34)
together with the consistency condition
ab=0. (35)
X3
b ab b
T
X1 0 0 0 0
L
X2
g =

Fig. (17). A natural map representation of the Boolean function g, the complement of the function f
in Fig.(3).
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X3

b ab ab

ab ab

b ab

b b ab

d(ab)

d(ab)

d(ab)

d(ab)

Xz

]

G (X1, X2, X3; p1,p2, P3)

Fig. (18). Each appearance of an entered atom in Fig.(17) is ANDed with a certain element of the set

of orthonormal tags while the atom ab that appears nowhere in Fig. (17) is
entered don't care.

Figure (19) shows the tree used to deduce all 8 particular solutions of g = 1 from the
parametric solutions (34) subject to (35). These are the same solutions as those in
Fig.(6). Itisclear from Fig. (18) that the particular solution corresponding to tagging

atom b with , atom ab with p, and atom b with is Xi= 0, X.= a

solution must satisfy

or, equivalently

Figure (19) demonstrates that this solution is indeed obtained for the parametric

<

<

bl

ab,

’

value p = a which satisfies (36) or (37) together with (35).

b, Xs=b. Trs

(36a)
(36b)
(36¢)

(37a)
(37b)
(37¢c)
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X;:bﬁVﬁp

X;=bpVvap

p=0 p%a p%b p;\(avb)\\
7 5 a P\

| ™~
X_:,:b X3=a X;=a X}zb X3:b X;=a
X>=b X;=b X;=(avb) X; = X;=a X,=a
X;=b X3=a
X,=(avb) X=0

Fig. (19). Tree used to deduce all particular solutions from the general parametric solutions (34)
subject to (35). The eight values assigned to p are from the collapsed lattice in Fig.(8). (X1
=0,ab=0).

7. Conclusions

In this paper, we presented a tutorial exposition and comparison of the main types of
Boolean-equation solutions, namely, subsumptive general solutions, parametric
general solutions, and particular solutions. We also made a detailed comparison of
the two prominent classes of methods used in the solution of Boolean equations, viz.
, the class of purely-algebraic methods and the class of tabular or map methods.
Though map methods can be generally categorized as tabular methods, they have
their own distinguishing characteristics to warrant classifying them as a separate
class of methods.

We used techniques employing the Variable-Entered Karnaugh Map
(VEKM) as representatives of map methods, since the VEKM is the natural map for
the underlying finite Boolean algebras. We pointed out that these techniques are
semi-algebraic in nature and include purely-algebraic techniques as special limiting
cases. Hence, we anticipated that VEKM techniques should never be inferior to
algebraic techniques. Later, we demonstrated that VEKM techniques are
occasionally superior to algebraic techniques since the former techniques naturally
and easily secure minimality over the basic set of pertinent variables and generators,
while the latter techniques seek a restricted sort of minimality over a set of chosen
coefficients. We supported our argument by an illustrative example in which a
VEKM technique was easier to implement and produced a more compact solution
(minimal solution) that was much easier to expand as a tree of particular solutions.
This example was over Bis = FB(a, b) which collapsed to Bs. Another supporting
example that is given in [32] is over Bessss = FB(a, b, ¢, d) that collapsed to Ba,.
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In conclusion, we note that algebraic methods are useful in the initial study of
the subject to maintain the rigor and set the theoretical framework. Map methods
(VEKM methods, in particular) complement algebraic methods, as they provide
pictorial insights, require easier shortcut manipulations, and produce much more
compact general solutions.
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