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Abstract. An accurate prediction of pavement performance results in an effective plan for 

managing the highway network in cost-effective management and future maintenance strategies. 

However, in some dry climate countries, the available resources are not enough to conduct a 

periodic evaluation for their highways and apply a suitable maintenance action at a proper time. 

Therefore, the objective of this study is to utilize the available data in the Long-Term Pavement 

Performance (LTPP) program for pavement sections that are in dry-non-freeze zones. The 

selection of LTPP pavement sections in dry-non-freeze zones attempts to represent the pavement 

performance in dry climate countries. The International Roughness Index (IRI) was used as a 

performance indicator because it reflects the level of riding quality, the comfort of road users, and 

the level of pavement condition. The random forests (RF) and multiple linear regression (MLR) 

models predict the IRI for flexible pavements from pavement age, traffic and climate data, 

pavement distress data, and structural properties. The results show that the coefficient of 

determination (R2) in the MLR model is 0.70, whereas the RF model yields a relatively higher R2 

value of 0.85. Also, the results of the RF model show that the initial pavement roughness was the 

most significant variable that impacted the pavement roughness, as well as, pavement thickness, 

pavement age, and truck volume have a high impact on the IRI value. 

 

Keywords:  Pavement Management Systems, Random Forest Regression, Multiple Linear 

Regression, Pavement Roughness, LTPP data.  
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1. Introduction 
 

Highway agencies invest millions of dollars per year in assessing the pavement conditions of the 

network and applying the required improvements such as preventive maintenance, rehabilitation, 

or reconstruction to make the roadway network meets the legislative, agency, and general 

requirements. Using the pavement management system (PMS) can assist the highway agencies in 

managing the roadway network, so the pavement conditions across the road network can maintain 

at an acceptable condition level [1]. The component of PMS includes inventorying pavement 

assets, performance prediction models to predict future conditions, which improve the efficiency 

of decision-making and visualizing tools to present the pavement conditions overall highway 

network. The most critical component in the PMS is performance prediction models, which 

support the decision-making process for different maintenance scenarios, as shown in Fig. 1. The 

weakness in this component can affect the accuracy of selecting maintenance actions that should 

be taken [2]. These prediction models relate a pavement performance indicator to many 

explanatory factors to create a simple function and determine influencer factors on the performance 

indicator. However, the ability and strength of the prediction models vary either because of 

insufficient collected data or lack of statistical models [3]. Recently, many studies have utilized 

sophisticated prediction models in the PMS Field. The remarkable finding is capturing and 

evaluating the uncertainty in the model either from material properties, climate conditions, and 

traffic loading data which can affect the model performance [4].  In addition, these factors are 

difficult to predict, which can affect pavement deterioration over the years. Therefore, a reliable 

pavement performance prediction model has required for the development of any pavement 

management system. This study utilized multiple linear regression (MLR) and random forests 

regression (RFR) models to predict the pavement roughness and compared their performance. 

The selected pavement performance indicator is pavement roughness because highway 

agencies widely utilize it as an indicator of riding quality. The international roughness index (IRI) 

reflects the pavement roughness, which is measured based on road profiler in units (m/km or 

in/mile) [5]. Therefore, the pavement roughness should be acceptable to ensure there is a suitable 

riding quality for both road users and goods. Moreover, the pavement roughness implies vehicle- 
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 operating costs in fuel consumption, maintenance cost, and tire wear cost. As a result, the fuel 

consumption will increase by 3 percent for each 1 m/km [6].  

 

Fig. (1). Pavement performance over years [1] 

 

This study utilized the LTPP database to predict the pavement roughness from pavement age, 

traffic volume, climate data, pavement thickness, and considered pavement distress. The Federal 

Highway Administration (FHWA) established the LTPP to collect all related data about pavements 

structure in North America at around 2500 pavement sections located in different climate zones 

[7]. The availability of this data has helped the transportation agencies save budgets by collecting 

distress data that needs a lot of workers and equipment. Many prediction models utilized the LTPP 

data for specific counties or States under particular conditions in North America. However, this 

study focuses on the particular climatic zone, which is dry-non-freeze climate zones, because this 

climatic zone represents many of the low-income countries. Therefore, the study considers a vital 

effort to find an alternative way to develop prediction models for the highway in low-income 

countries with insufficient resources to collect and analyze data. 

2. Research Objectives 

 

The main objective of this research is to predict the IRI of asphalt pavements located in dry-non-

freeze climatic zones. There are two main steps for achieving the research objective: 

1. Extracting all available data in dry-non-freeze climate zone from the LTTP database in the 

United States. 

2. Develop the conventional multiple linear regression model to predict the pavement 

roughness. 
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3. Develop the random forest regression model to predict the pavement roughness. 

4. Determine all the critical variables that could influence IRI values and compare the results 

of the two developed models.   

All the selected pavement sections used in the analysis have never been exposed to any 

maintenance activities, so the obtained data were just years before rehabilitation or significant 

maintenance action.  

3. Methods 

 
Predicting an accurate pavement performance model can help decision-makers and agency 

engineers to make proper decisions for maintenance and rehabilitation activities to improve the 

pavement performance in the highway network. However, predicting a robust pavement 

performance is not an easy task because the prediction model must include influence factors. In 

this study, multiple linear regression and random forest regression models were used to predict the 

pavement roughness of asphalt pavement in the dry-non-freeze climate zone in the United States.  

 

3.1. Data Collection and Preparation 

 

The data used in this research was obtained from the Long-Term Pavement Performance (LTPP) 

program. The FHWA established the LTPP program to collect pavement performance data as one 

major part of the Strategic Highway Research Program (SHRP). According to the FHWA, 2,500 

pavement test sections in the North American highways are managed and monitored by the LTPP 

program. The LTTP program includes all related information about each pavement section, such 

as inventory, maintenance/rehabilitation activities, pavement condition, material, traffic, and 

climate [7]. In addition, the LTPP program divided the climate conditions in the United States into 

four zones: Wet-Freeze, Dry-Freeze, Wet No-Freeze, and Dry No-Freeze as shown in Fig. 2. 

In this study, the collected data from the LTTP includes data until the year 2018 for asphalt 

pavement sections located in the dry-non-freeze zone. Therefore, the study covers 81 pavement 

sections in California, Arizona, New Mexico, Texas, Nevada, and Utah, where the climate zone is 

dray-non-freeze. The number of LTPP asphalt pavement sections at each state is listed in Table 1.  
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Fig. (1) Distribution of climatic zones in the United States [8] 

 

Table (1). Number of selected LTPP sections at each State 

State 
Number of LTPP asphalt pavement 

Sections 

California 31 

Arizona 20 

New Mexico 7 

Texas 13 

Nevada 9 

Utah 1 

 
The selected explanatory variables for predicting pavement roughness are based on previous 

studies in the literature. For instance, Gong et al. (2018) predicted pavement roughness of flexible 

pavements based on traffic, climate, structure, maintenance, and distress data from 11,000 data 

samples from the LTPP database. Likewise, Lucey et al. (2019) employed the LTPP data to predict 

the pavement roughness by using traffic data, pavement age, and structural properties as input 

variables for the prediction models [9]. 

Hossain et al. (2020) used the traffic and climate data from the LTPP database to predict the 

pavement roughness in ten sites in the United States [5]. Therefore, the collected data in this study 

include asphalt pavement thickness, pavement age, number of lanes, annual average precipitation, 

annual average temperature, annual average daily traffic, annual average daily truck traffic, fatigue 

(alligator cracking), wheel path longitudinal cracking, non-wheel path longitudinal cracking, 
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transverse cracking, rutting, IRI, and initial IRI values. These data are summarized in Table 2. 

Each row in the data set has several attributes such as section ID, highway classification, number 

of lanes, structural properties, pavement distress, and climate data. The sections considered in the 

analysis were all the sections that had not been subjected to any maintenance or rehabilitation 

actions to get accurate forecasting models.  

Table (1). The mean values of the considered variables 

Variable Mean 

asphalt pavement thickness (mm) 195.5 mm 

pavement age (year) 10.76 years  

number of lanes (count) 2 lanes 

annual average precipitation (mm) 285 mm 

annual average temperature (0C) 17 0C 

annual average daily traffic (AADT) 5870 vehicles  

annual average daily truck traffic (AADT)   1609 trucks 

fatigue (m2) 24.4 

wheel path longitudinal cracking (m) 15.36 m 

non-wheel path longitudinal cracking (m) 57.2 m 

transvers cracking (count) 17.37  

rutting (mm) 6.61 mm 

international pavement roughness (m/km) 1.91 m/km 

international pavement roughness (m/km) 0.96 m/km 

 

3.2. Multiple Linear Regression (MLR)  

  
Highway engineers have commonly used a multiple linear regression model to forecast pavement 

performance and generate a straightforward equation that engineers can use. Several studies 

adapted MLR models for predicting pavement performance. For instance, Chen et al. (2016) used 

a multiple linear regression model to predict the pavement condition of the highway network, 

which is important to plan future maintenance actions [10]. Other researchers utilized MLR for 

developing predictive models for pavement roughness based on pavement age and distress. For 
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example, Abdelaziz et al. (2020) applied MLR to evaluate the impact of pavement thickness and 

traffic volume on pavement roughness as an indicator of pavement performance [11]. 

In this study, the R software developed the multiple linear regression to predict the 

pavement roughness. First, the function lm in the R package was utilized to fit the MLR model. 

Then, to select the best independent variables for the model, the stepwise regression method gave 

the candidate variables for predicting pavement roughness. Then, the multiple linear regression 

model is developed to evaluate the relationship between the pavement roughness and the 

independent variables. The significant independent variables influencing pavement roughness in 

asphalt pavement were initial IRI, rutting, transverse cracking, fatigue (alligator cracking), 

pavement age, asphalt layer thickness, and truck loading. 

3.3. Random Forest Regression (RFR) 

 

Random forest trees are decision trees constructed randomly based on bootstrapping or bagging 

with random feature selections and can be used for classification and regression. Unlike the MLR, 

the RFR model does not require any previous assumptions to be met, such as normality and 

variance homogeneity [12]. The performance of random forest trees works better than the single 

decision trees because many decision trees give less noise and then more accurate results [13]. In 

addition, the RFR considers the standard way to aggregate the outcomes of many trees with good 

predictive performance to produce a model that can deal with extensive data set, no over-fitting, 

and high accuracy results [3].  

Cheng et al. (2019) illustrated the process of the RFR working in three steps [14]: 

1. Different samples are randomly selected from the original database by using the 

bootstrapping technique. 

2. From every single tress, multiple decision trees are built until they reach the maximum 

depth. 

3. Combine the decision trees based on the majority voting strategy (overall, the tress in the 

forest). The outcome is the most predicted value across the trees; the process is illustrated 

in Fig. 3.  

The random forest model has been applied recently in the transportation field to solve prediction 

and classification applications. Cheng et al. (2019) summarized 19 studies done since 2012 in four 

categories: travel choice behavior, traffic accident prediction, traffic flow/time prediction, and 
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pattern recognition [14]. Their results show that the RF method can deal with different data types, 

nonlinear fitting relationships, and effective prediction problems. Despite the popularity of the RF 

method in the transportation field, its applications in the pavement management system field are 

limited. For example, Gong et al. (2018) and Marcelino et al. (2019) utilized the RF method to 

predict the IRI of flexible pavement based on structural properties, traffic data, and climate 

conditions [3] and [15]. In 2020, a research used the RF method to predict the structural capacity 

in the flexible pavement from surface deflection and air temperature [16].  

 
Fig.(2). Explanation of the random forest regression algorithm  (Cheng et al., 2019) 

 

In this study, the function random Forest of the R software was used to develop the RF 

model. The random Forest function requires selecting the number of variables (m) at each node in 

the trees to decide. The number of candidate variables at each split was four, and the number of 

trees for fitting the model was 500. The type of random forest was a regression, and it provides 

tools for assessing the model performance, which are residual errors and percentage of explained 

variance. In addition, the RF provides the variable importance for each predictor variable, which 

can be used to compare with other models.  

For evaluating the performance of the two models, multiple linear regression and the 

random forest regression, the coefficient of determination (R2) and means square error (MSE) 

were utilized to assess and compare the performance of these models. The coefficient of 

determination (R2) represents the strength of correlation between the predicted and observed 
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values, and it ranges between 0 and 1 (0 means no correlation, one means observed and predicted 

values are in agreement) [17]. The R2 and MSE are defined in equations 1 and 2, respectively. 

 

𝑅2 = 1 −  
∑ (𝑦𝑖−𝑦̂𝑖)2𝑛

𝑖

∑ (𝑦𝑖−𝑦̅)2𝑛
𝑖

         (1) 

 
𝑀𝑆𝐸 =

1

𝑛
  ∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖         (2) 

 
Where 𝑦𝑖 is the actual value, 𝑦̂𝑖  is predicted value, 𝑦̅  is the average value, and n is the number of 

observations. 

 

3.4. Essential Variables in Random Forest Regression 

 
The RF algorithm has two valuable advantages over the other machine learning algorithms; high 

accuracy model among the most communally used models, and the importance of variables can be 

determined and evaluated [9]. Understanding which predictor variables are the most crucial task 

to improve and enhance the prediction models. The benefits of determining the importance of each 

variable are embodied in; a) removing the unreliable variables that impact the final prediction 

model, b) decreasing the cost of collecting and saving the data, c) improving the capability of the 

machine learning process [18]. Saha et al. (2016), Gong et al. (2018), and Cheng et al. (2019) 

presented the critical variables that show the contribution of each variable in the final prediction 

model [19], [3] and [14]. An RF typically uses the Gini impurity index to calculate the best split 

choice, which calculates the impurity of a particular variable concerning other impurities [20].  

In this study, the Gini impurity index was employed to identify significant variables that 

affect pavement roughness. For the factor used to create the split, the Gini impurity index decrease 

at an internal node is calculated. A particular variable's significant value is considered the average 

decrease in Gini impurity index overall tress in the forest [14]. The calculation of the Gini impurity 

index for splitting in candidate variable Xi with different categories LJ is represented in Equation 

3. When the Gini impurity indices are determined for each splitting variable choice, the separation 

is performed on a variable that has a higher value of the Gini impurity index. 

𝐺(𝑋𝑖) =  ∑ 𝑃(𝑋𝑖 = 𝐿𝑗)𝐽
𝑗=1 (1 − 𝑃(𝑋𝑖 = 𝐿𝑗)) = 1 − ∑ 𝑃(𝑋𝑖 = 𝐿𝑗)

2𝐽
𝑗               (3) 
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4. Results 
 

4.1. Multiple Linear Regression 

 

The multiple linear regression model was performed to predict the pavement roughness of flexible 

pavement in the dry-non-freeze area. A stepwise regression test was conducted to determine the 

most influential factors that could influence the pavement roughness. The MLR model selected 

significant factors based on a 95% confidence level with a p-value ≤ 0.05. The final MLR model 

includes seven factors: initial IRI value, rutting, pavement age, transverse cracking, fatigue, trucks 

load, and AC thickness, as shown in Table 3. At the same time, the annual average temperature 

and precipitations are not statistically significant in this model. However, as shown in Table 3, the 

coefficients of initial IRI, rutting, pavement age, fatigue, transverse cracking, and the truck volume 

are positively correlated, indicating that the roughness of asphalt pavement will increase with 

increasing any one of these variables. On the contrary, the pavement roughness will get better (less 

roughness) with increasing asphalt layer thickness as it appears as a negative relationship. 

Table (2). Multiple linear regression model results 

 

The goodness of fit of the multiple linear regression model is represented by a coefficient of 

determination R2 = 0.70, which means that the model can explain 70% from the analyzed data. 

Furthermore, the model residual plot is normally distributed, as shown in Fig. 4. 

 

Variable Estimate Standard Error t Stat p-value 

Intercept 0.314 0.079 3.967 8.626E-05 

Initial roughness (m/km) 0.790 0.043 18.193 2.008E-54 

Rutting (mm) 0.009 0.003 2.986 0.003 

Pavement age (year) 0.008 0.002 4.431 1.212E-05 

Transvers cracking (count) 0.003 0.001 3.832 1.47E-04 

Fatigue (m2) 0.001 0.000 5.041 6.99E-07 

AC thickness (mm) -0.001 0.000 -2.420 0.016 

Truck (AADTT) 2.249E-05 1.084E-05 2.074 0.0387 
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Fig. (3)  Residuals versus predicted values 

The relationship between the measured pavement roughness and predicted pavement roughness 

from the model is presented in Fig. 5. 

 

 
Fig. (4). Relationship between the measured and predicated IRI from the MLR Model 

 

4.2. Random Forest Regression  

The random forest model was developed to predict the pavement roughness based on 13 variables: 

initial IRI, AC layer thickness, pavement age, traffic loading, pavement distress (cracking, fatigue, 

and rutting), and climate data (temperature and precipitation). The percentage of the variance of 

the final model is 85%, and the fitted line between predicted and observed IRI is shown in Fig. 6.  
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Fig. (6). Relationship between the measured and predicated IRI from the RFR model 

 

The importance of variables is the critical output from the random forest model. A variable with a 

higher percentage of increase in mean square error means this variable has a higher impact on the 

model output. Fig. 7 shows the ranking of variables based on their importance to the pavement 

roughness in asphalt pavement type. The initial pavement roughness value is the most critical 

variable in predicting pavement roughness. That indicates pavement with low roughness value at 

an early age will be in good condition for a long time. Also, the results show the thickness of the 

asphalt layer, pavement age, transverse cracking, and the number of trucks are significant in 

predicting pavement roughness compared to climate factors as compared to the other pavement 

distress (Fatigue, rutting, and longitudinal cracking), traffic loads and the number of lanes. 

 

 
Fig. (7). Importance variables to the pavement roughness 
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The RFR model represents the model output in a tree to illustrate the procedure of predicting the 

response. For example, Fig. 8 shows a diction tree for predicting pavement roughness based on 

seven variables: initial pavement roughness, pavement age, rutting, AC thickness, longitudinal 

wheel path cracking, fatigue (alligator cracking), and transverse cracking. A diction is taken at 

each node from top to down until getting the predicted value. 

 

 

 

 

 

Fig. (8). The random forest trees for predicting IRI values 

4.3. Comparison of random forest regression and multiple linear regression 
 

The results of the comparison between RFR and MLR show that their results are acceptable; 

however, the RFR model provided better performance in predicting pavement roughness than the 

MLR model. The R2 values of RFR and MLR are 85% and 70%, respectively, in predicting the 

pavement roughness in asphalt pavement in the dry-non-freeze climate area. Moreover, the mean 

square error of RFR and MLR models are 0.055 and 0.091, respectively.  

The goodness of fit in the RFR model is better because of its ability to deal with nonlinear 

relationships between pavement roughness and the explanatory variables. The results of the two 

models indicated different factors that cause pavement roughness in asphalt pavement. For 

instance, the initial pavement roughness has been found as an essential factor affecting pavement 
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roughness, which is consistent with a study done by [3]. In addition, the thickness of the asphalt 

layer and truck loading were identified as important factors in the RFR model. In contrast, these 

factors were not crucial in the MLR model, and that is because of the nonlinear relationships 

between these factors and pavement roughness. In addition, in the MLR analysis, the climate 

variables (temperature and rainfall) were not significant, indicating that the relationships between 

these data and pavement roughness were nonlinear associations. 

5. Conclusion 

 

Predicting pavement performance is the main component of pavement management systems and 

plays a major role in distributing the obtained money for maintenance and rehabilitation projects. 

This study aims to predict the IRI for flexible pavement that is located in dry-non-freeze climatic 

zones, which can be used in countries with the same climate conditions. The analyzed data were 

obtained from the LTPP database for all pavement sections that have not been subjected to any 

minor or major maintenance activities. The study used random forests regression (RFR) and 

multiple linear regression (MLR) to predict the pavement roughness from initial IRI value, traffic, 

climate, pavement age, layer thickness, and distress. The results show the RFR got R2 = 0.85, 

whereas the MLR model (R2 = 0.70).  

Therefore, we can conclude that RFR is a more accurate model and can be deal with 

nonlinearity and extensive data. Also, rather than other machine learning algorithms, which are 

considered black-box models, the output of the RFR model can determine the relative importance 

variables.  

This study determined the initial IRI value, pavement age, pavement thickness, and truck loading 

as essential variables affecting pavement roughness. Finally, the developed prediction models in 

this study can be considered performance models for the needed countries located in the same 

climatic zones until they build their models based on the locally collected data. 
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ف في  للتنبؤ بخشونة الرصلخطي المتعدد والانحدار ا  ةالعشوائيللغابات  مقارنة الانحدار 

المناخ الجاف ذات بلدانال  
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ينتج عن التنبؤ الدقيق لأداء الرصف خطة فعالة لإدارة شبكة الطرق السريعة في إدارة فعالة    ملخص البحث.

، لا تكفي في بعض البلدان ذات المناخ الجافمن حيث التكلفة واستراتيجيات الصيانة المستقبلية. ومع ذلك ،  

المناسبة في الوقت المناسب. الموارد المتاحة لإجراء تقييم دوري لطرقها السريعة وتطبيق إجراءات الصيانة  

 ، فإن الهدف من هذه الدراسة هو الاستفادة من البيانات المتاحة في برنامج أداء الرصف طويل المدىلذلك

(LTPP)  .الرصف قطاعات اختيار  يهدفلأقسام الرصف الموجودة في مناطق جافة غير متجمدة (LTPP)  

ف في البلدان ذات المناخ الجاف. تم استخدام مؤشر الخشونة  المناطق الجافة غير المجمدة تمثيل أداء الرصفي  

حالة   (IRI) الدولي ومستوى  الطريق  مستخدمي  وراحة  الركوب  جودة  مستوى  يعكس  لأنه  للأداء  كمؤشر 

المرنة    للرصفيات  IRI بـ (MLR) والانحدار الخطي المتعدد  (RF) ف. تتنبأ نماذج الغابات العشوائيةلرصا

وبيانات   والمناخ  المرور  وحركة  الرصف  عمر  بيانات  أظهرت   الأولية  فالرصمن  الهيكلية.  والخصائص 

ينتج    RFRالغابات العشوائية  ، في حين أن نموذج    0.70هو    MLRفي نموذج R)2 (النتائج أن معامل التحديد 

ف  أن خشونة الرص  RFRبات العشوائية  الغاأن نموذج  . كما أظهرت نتائج  0.85أعلى نسبياً تبلغ   2R عنه قيمة

 واعداد ف  على خشونة الرصف، كما أن سمك الرصف وعمر الرص  تؤثريرات التي  الأولية كانت من أهم المتغ

 .  IRI لها تأثير كبير على قيمة ات الشاحن
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