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Abstract. Autonomous Vehicles (AV) are the smart cars of the future anticipated to be 

driverless, efficient, and crash-avoiding ideal urban cars. Software complexity, real-time data 

analytics, verification, and testing are among the more significant challenges in autonomous 

driving technology. This article presents practical experience and valuable insight into the 

above-mentioned challenges by developing a lab-scale autonomous car prototype using 

Rasberry Pi and Google accelerator. The full description of the car, including its technical 

specifications, the hardware and software design procedures, and the lab-scale circuit for 

testing, are discussed in detail. The developed prototype is equipped with the machine learning-

based lane detection algorithm. The performance of the installed lane detection algorithm is 

verified by testing the car prototype using the lab scale circuit.  
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1. Introduction 

With around 2 billion vehicles predicted to roam the road by 2030, road safety is one of 

the essential agendas of governments around the world. Currently, measures to enhance road 

safety have been carried seriously, with the help of technologies like Closed-Circuit Television 

(CCTV) cameras, road sensors, and more [1]. However, despite these efforts, based on data 

from the World Health Organization (WHO) [2], road accidents have caused around 1.25 

million deaths yearly. WHO has also projected that these numbers will hit 1.8 million by 2030 

[3]. Furthermore, it has been reported in [4] that the number of road accident fatalities in the 

United States alone was 32,000 in 2014 and increased to more than 35,000 in 2015, which 

demonstrates that human errors can still occur even with the assistance of the currently 

deployed technologies. Innovative technologies such as connected and autonomous cars are 

actively studied to help reduce these human errors and subsequently improve life-threatening 

situations on the road. 

An autonomous car is a computer-controlled car that can mainly guide itself on the road, make 

its own decision, and react to the changes in its surroundings. All these functions are being 

operated by the car without human interaction. The autonomous car should be supported by 

features such as navigation and path planning, maneuver control, and neighborhood awareness, 

which includes object detection, lane detection, self-positioning, and lane spotting [5]. Lane 

detection plays an integral part in the operation and safety of autonomous cars via lane keeping 

and lane departure control systems, ensuring the car is safely located in its lane and 

subsequently minimizing the collision on the road. Machine learning and deep learning 

mechanisms have been actively identified to potentially support lane detection features in an 

autonomous car [6][7]. Within this domain of research, several approaches have been proposed 

[8]. Among the work is the work of [9], which proposes a multi-sensor data system utilizing a 

deep neural network to detect the lane in a 3D space. The Convolutional Neural Network 

(CNN) and its waveform are analyzed in detail for lane detection [10]. In another set of works 

[11], stereo vision and CNN are developed in the lane detection and classification strategy for 

the autonomous car. Finally, in [12], a recurrent neural network is proposed to perform the 

autonomous car’s features of lane detection and collision avoidance. 

The idea of the autonomous car, despite its challenging features, opens up new innovative 

applications and presents consumers with safety, ease of use, comfort, and value-added 

services. To study the impact of these technologies, small prototypes of the autonomous car 

are built to analyze the performance of the car in the control laboratory environment. A 

prototype vehicle equipped with drive-shaft and steering encoders, a scanning laser range 

finder and a passive RFID reader is used as a mapping tool, applicable to underground mining, 
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which combines odometry, laser range scanners, and RFID beacons [13],[14]. A lab-scale 

dump truck equipped with a Light Detection and Ranging (LIDAR) sensor is used to perform 

the navigation triangulation, in combination with reflective beacons placed on apriori known 

positions to demonstrate the feasibility of autonomous underground navigation [15]. The work 

of [16] builds the prototype shuttle car and the lab-scale and mock mine environment and 

provides preliminary results on autonomous navigation in the mining industry [16]. The 

autonomous car prototype in [16] is equipped with a series of cameras for the surrounding 

views, and LIDAR tracking is used for collision avoidance and emergency brakes.  

To the best of our knowledge, there are still no autonomous car prototypes in academia that 

study the practical aspect of the lane detection features of an autonomous car. To add to this 

line of study, our work develops the autonomous car prototype using Rasberry Pi with the 

Google accelerator, implementing an AI-based technique for lane detection problems. This 

paper conveys practical experience developing and testing the lab-scale autonomous car 

prototype. It includes the full description of a laboratory-scale autonomous car with a detailed 

machine learning-based lane detection algorithm, its design procedure, performance results on 

the lab-scale circuit, and a summary and conclusion 

 

    

2.  Impacts of Autonomous Vehicles on Intelligent Transport 

Autonomous vehicles will greatly impact the societal, health, environmental, and safety 

domains of the intelligent transport industry. AVs are generally designed to ensure improved 

performance in different situations. However, eliminating various risks, such as accidents, is 

still not feasible. Therefore, let us briefly discuss the promising positive impacts of AVs and 

their associated risks. 

We start with the clear and significant benefits of AVs, which is enhanced traffic safety 

compared to vehicles with drivers. This feature will result in many subsequent positive 

impacts, such as a considerable drop in accident ratios globally and enhanced safety for 

pedestrians, side walkers, and cyclists. AVs can also be considered green technology with 

massive potential in reducing noise and air pollution, as soon most AVs will be electric. The 

direct impact of AVs is even more significant to the driver, such as less stress and tired from 

long hour driving or when stuck in traffic jams. When it is applied to public transport, it 

improves the utilization of commute times and increases social interactions since AVs are 

viable to all irrespective of age, can or cannot drive, easy mobility to venues and events, Etc. 

Already mentioned benefits will also result in a stress-free live style, subsequently improving 

overall health.  
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While the positive impacts of AVs are huge, there are also risks associated with the large-

scale deployment of AVs in the future. One direct impact might drain away certain types of 

jobs, especially those who drive for a living. Based on the statistical study by Goldman Sachs, 

it is estimated that there could be up to 25,000 jobs lost a month in the US. With truck driving 

as one of the most common occupations in the US, that figure could turn into over 300,000 

job losses per year. On the other hand, an estimated 1.7 million truckers could also be replaced 

by self-driving counterparts in the UK alone. 

Besides drivers, there is also a reduction of jobs in law enforcement, as the automation of cars 

enhances the safety domains by reducing and eliminating traffic violations. Table I lists the 

advantages and disadvantages the future of AVs will offer to the environment, society, human 

health, and safety [17-21]. 

 

Table (1). Advantages and disadvantages of AVs 

Domain

s 

Positive 

Impact 

Reason Negative 

Impact 

Reason 

Societal  

Ease of 

access 

1. Door-to-door access for 

people of all ages (kids, 

adults, or elderly) 

2. Enhanced access to venues 

for intellectual, pleasure, or 

social exchange 

 

Job cuts on 

a mega-

scale 

specificall

y in the 

transportati

on sectors 

Public 

transport 

vehicle 

drivers are 

no longer 

needed. 

Wider 

mobility 

For people who cannot drive 

because of disabilities and 

serious illness 

  

Less 

number of 

cars per 

family 

Single AV can perform 

multiple rounds for all your 

tasks daily reducing the 

number of cars on roads 

  

Commutin

g time 

utilization 

Riders can utilize commute 

time by working or relaxing 
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Enhanced 

affordabilit

y 

Reduced ride costs enabling 

middle- or lower-class 

community 

  

Health 

Improved 

health 

1. Less stress - Long hours of 

driving directly affect human 

health as driving is a stressful 

job. Therefore, overall health 

is improved consisting of 

physical, mental, etc. 

 

2. Fewer noise - Less cars on 

roads will reduce noise 

excessively, which as per 

research related to 

hypertension, cardiovascular 

health, etc. 

  

Environ

ment 

Less 

pollution 

1. Gas consumption is 

significantly reduced with 

AVs directly ensuring less 

pollution 

 

I. Less number of AVs 

will be on the road 

II. AVs will utilize 

optimized routes from 

destination A to B 

III. Optimized performance 

of acceleration and 

braking systems 

 

2. Moreover, future AVs will 

be electric vehicles reshaping 
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  3. Concept Design: Camera with Google Accelerator Unit (Gau) Connected to 

Rasberry Pi Processor 

3.1 The concept design of the autonomous car prototype:  

Fig. 1 presents the main hardware and software components to design and build the 

autonomous car prototype. First, the proposed design consists of a camera installed at the front 

end of the car prototype with the computer vision function capturing the video of the front 

sight. The camera and its function act as the vision for the designed prototype, and the captured 

video after being processed via the artificial intelligent method is used to steer and maneuver 

the forward movement direction. The steering and forward movement manoeuvring is 

performed by the DC motor. To perform the AI processing on the contents of the captured 

video frame, Python programming with an OpenCV package installed and running on the 

Raspberry Pi and Google accelerator is used.  

the transportation industry 

completely 

Safety 

Significant 

reduction 

in traffic 

accidents 

because of 

driver-

related 

crashes 

 

Many violations made by the 

drivers are completely 

avoided such as 

1. Over speeding 

2. Impaired driving 

3. Traffic violations 

4. Distractions (use of cell 

phones etc.) 

Job cuts 

related to 

the law 

enforceme

nt unit. 

Better 

transportati

on 

infrastructur

e reducing 

fines 

Increased 

pedestrian 

safety 

 

Traffic violations such as not 

following traffic signals will 

drop to zero with driverless 

cars which is not possible in 

case of a driver on steering 

control 
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The Raspberry Pi, refer to Fig. 4, is a single printed circuit board with four cores achieving a 

speed of 1.5GHz. Moreover, it is equipped with either 2 or 4 GB of RAM capable of 

processing and analyzing photos and instructing proper command to the DC Motors attached 

to the wheels of the car. However, the Raspberry Pi unit can analyze one frame per second, 

making it unvital to control the motors. This limitation is partially improved by connecting 

the Google Accelerator unit to the Raspberry Pi unit via a USB port which can process 12 

frames per second. The Coral USB Accelerator adds an Edge TPU coprocessor to the system, 

which includes a USB-C socket to connect with a host computer for accelerated Machine 

Learning (ML) inferencing. The onboard Edge TPU is a small Application Specific Integrated 

Circuit (ASIC) designed by Google that accelerates TensorFlow Lite models in a power-

efficient manner. This can perform 4 trillion operations per second using only 2 watts of 

power, as explained in the block diagram. 

Moreover, software of Raspbian, Python, OpenCV, TensorFlow, and Keras is installed and 

used for the execution of the codes with details as follows: 

• To program the operating system of the Rasberry PI and its graphical user interface. 

• Python is used to control the manoeuvring function for the DC motors of the built 

prototype 

• OpenCV package is utilized to process the image captured by the camera. 

• TensorFlow is an end-to-end open-source machine learning platform compatible with 

Google Accelerator. 

 

 

  

Fig. (1). Main components of the proposed autonomous car prototype. 
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One of the main functions of the software is to pre-process the captured image from the camera. 

Moreover, for essential feature extraction such as map values, kernel convolution techniques 

are used, given by the following equation 1  

 

𝐺[𝑚, 𝑛] = (𝑓 ∗ ℎ)[𝑚, 𝑛]  
 

                = ∑ ∑ ℎ[𝑗, 𝑘] 𝑓

𝑘𝑗

[𝑚 − 𝑗, 𝑛 − 𝑘] 

  

(1) 

 

where the input image is denoted by f and kernel by h, with rows and columns of the resulting 

matrix marked with indices m and n, respectively. The convolutional process starts with setting 

a filter, which will be applied to the image, one pixel at a time. 

Then, the following filtering Equation 2 is used to minimize the size of the considered image 

for efficient processing by converting the image into several smaller layers 

 

     [𝑛𝐼𝑛𝐼𝑛𝐶] ∗ [𝑓𝐼𝑓𝐼𝑓𝐶] 
 

             = [𝑛𝐼𝑛𝐼𝑛𝐶] ∗ [𝑓𝐼𝑓𝐼𝑓𝐶] 
 

             = [ [
𝑛 + 2𝑝 − 𝑓

𝑠
+ 1] , [

𝑛 + 2𝑝 − 𝑓 

𝑠
+ 1] , 𝑛𝑓] 

 

(2) 

 

 

with image size (n), filter size (f), number of channels in the image (nc), padding (p), stride 

(s), and number of filters [nf]. In order to process more images in less time, each colored image 

is divided into three layers, and each layer of the colored image consists of three primary colors. 

As a result, utilizing a higher number of filter increases is directionally proportional to layers 

and inversely proportional to the dimensions of these layers. Fig. 2 provides an example of 

how the filter is applied to reduce the dimensions of the RYB color image. 
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Fig. (2). Filtering to reduce the dimensions of a color image [22] 

Simulation techniques are an essential part of electronic circuit design, providing insight into 

a designed circuit's operation prior to its being built. It also provides invaluable input to design 

optimization and verification and can highlight problems that result from component and 

interconnect placement. In this work, the software Proteus is used to design and simulate the 

autonomous car prototype's electronic circuit. Fig. 3 presents the electronic circuit design and 

simulation of the servo motor driver that controls the motor of the right and left wheels of the 

prototype. 

 

 

 

 
Fig. (3). Electronic circuit design for the driver of the back wheel motors 

 

3.2 Assembly of the prototype:  

Now we are ready to assemble the AV prototype. There are two main pieces of hardware that 

need to be integrated to build the prototype. First is the Raspberry Pi, which acts as the brain 

of the car, with features such as USB inputs, GPIO pins, and its connectivity to wireless 

networks through Bluetooth and WIFI, shown in Fig. 4. 
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The second hardware is the robotic car components from the body chassis, wheels, gear motor, 

servo motor, battery chase, camera, and PCB board, i.e. Robot Hat, motor drive module, and 

PCA9865. Fig. 5 presents all of the steps to assemble the prototype. 

 

 
 

Fig. (4). Layout of Raspberry pi 

 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. (4). Assembly steps for the prototype. (a) Assembling the main chassis and rear motors. 

(b Preparing Raspberry and Hat.  (c) Installing Raspberry Pi’s Hat. (d) Preparing the front 

wheels. (e) Installing the front wheels. (f) Adding the camera. 

 

 

 

3.3 Route Optimization and Control:  

This subsection present and explain the components of the robotic car that are used for route 

control and optimization.  
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Fig. (6). Robot Hat 

 

As shown in Fig. 6, a Robot Hat is used to design the 40-pin GPIO Raspberry PI, which can 

power Raspberry PI using a lithium 18650 battery. Moreover, Robot Hat can manage power 

even if the Raspberry got its power from an external source using a Type-c cable. Furthermore, 

it contains an integrated circuit PCF8591 which is I2C communication, a protocol used to send 

signals from Raspberry PI to motors. Moreover, the PCA9865 16-channel 12-bit I2C bus 

shown in Fig. 7 is the Pulse Width Modulation (PCM) driver used to control servo motors 

attached to the front wheels of the car. 

 

 

 

Fig. (7). PCA9865 

Also, a motor driver module with the following specifications shown in Fig. 8 is used: 

i. Power motor control port: include pins for supplying the chip and the motors 
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ii. PWM input for motors: PWM signal input for adjusting the speed of the two motors 

iii. Motor Output Port: output port for two motors. 

 

Fig. (8). Motor Driver Module 

 

 

Fig. (9). Clutch Gear SF006C for Servo Motor 

 

The clutch gear shown in Fig. 9 is a digital servo with a DC motor inside the core with 

specifications given in Table II. The steering gear reducer will automatically clutch and protect 

the product from damage and normal load with applied load. Fig. 10 on the other hand depicts 

the DC gear motor used to control the speed of the clutch gear. 

Finally, a wide-angle USB camera that acts as the input component for the robotic car with the 

function to capture the video image of the lane is presented in Fig. 11. 
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Table (2). Specification of motor 

Item V=4.8V V=6.0V 

Consumption (No 

Load) 

≤ 50𝑚𝐴 ≤ 60𝑚𝐴 

Stall Current  ≤ 550𝑚𝐴 ≤ 650𝑚𝐴 

Rated Torque ≥ 0.6𝑘𝑔𝑓. 𝑐𝑚 ≥ 0.7𝑘𝑔𝑓. 𝑐𝑚 

Max. Torque ≥ 14𝑘𝑔𝑓. 𝑐𝑚 ≥ 1.6𝑘𝑔𝑓. 𝑐𝑚 

No Load Speed ≤ 0.14𝑠𝑒𝑐/60° ≤ 0.12𝑠𝑒𝑐/60° 

 

 

 

Fig. (10). Dc Gear Motor 

 

 

Fig. (11). USB Camera 
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  4. Development of Lane Detection Algorithm 

This section explains the development of the lane detection algorithm programmed in our built 

autonomous car prototype. Lane detection is an integral part of an advanced driving assistant 

system. The accurate identification of lanes is the foundation of driving assistant systems like 

lane departure warning systems and lane change maneuver estimation.  

The lane detection algorithm uses the snapshot image from the wide-angle camera. Based on 

the output of the lane detection algorithm, the corresponding angle of the steering wheel is 

computed and sent to the front server motor to ensure the prototype autonomously maneuvers 

the built prototype car within the lab-scale track. 

 

 

Fig. (12). Two lines generated as an output from the lane detection algorithm 

Fig.12 illustrates the two lines generated from the executed lane detection algorithm. Each line 

can be represented using the (X, Y) coordinates of the pixel at both ends of the line as in Eq. 3 

and 4 

𝑋𝑘 = [𝑥1,𝑘 𝑥2,𝑘]                                                                                      (3) 

𝑌𝑘 = [𝑦1,𝑘 𝑦2,𝑘]                                                                                      (4) 

where subscripts 1 and 2 represent the left and right lines, respectively. As a result, the 

objective of the lane detection algorithm is to obtain these four coordinates, two for each line. 

To produce the two lines, image processing techniques are utilized to process the snapshot 

image to reduce computational complexity. Firstly, the RGB snapshot image is converted to 

one layer grayscale image to reduce the size of the image and reduce the complexity of the 

algorithm. Second, the noise is removed from the grayscale image by using Gaussian blurring 

technique [23]. This technique enhances the difference between pixel, which improve the 

detection of the lane. Third, canny edge detection [24] is used to extract useful structural 

information, i.e., the line structure of the lane, which also significantly decreases the quantity 
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of data to be processed. Finally, the lane structure and the four coordinates of the left and right 

lines in the image are identified by using the Hough transform method [25-27]. 

Once these coordinates are obtained, the next task is to determine the direction for the 

autonomous car prototype. In Fig.12, the direction for the autonomous car can be determined 

by generating the third lines represented using the (X, Y) coordinates as in Eq. 5, 6, 7, and 8 

Xavg = [x1,avg x2,avg]                                                                          (5) 

Yavg = [y1,avg y2,avg]                                                                                              (6) 

 

where for 𝑖 ∈ {1,2} 

 

xi,avg =
xi,l+xi,r

2
                                                                            (7) 

     

yi,avg =
yi,l+yi,r

2
                                                                             (8)    

By using the computed (Xavg, Yavg), the direction can be represented using the steering angle 

𝜃, which can be computed using Eq. 9 

 

𝜃 = tanh−1 (
y1,avg− y2,avg

x1,avg− x2,avg
)                                                                                         (9) 

_________________________________________ 

Algorithm 1: Lane detection and steering angle algorithm 

__________________________________________ 

Input:                  Image S, m x n pixels 

    

S−> [

𝑠1,1 … 𝑠1,𝑛

⋮ ⋱ ⋮
𝑠𝑚,1 … 𝑠𝑚,𝑛

] 

Output     : (1) The coordinate (Xk, Yk) of the lane in the image S, where 𝑘 ∈ {𝑙, 𝑟} 

represents the left and right lines, 
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                              (2) The steering angle 𝜃 

Procedure: 

If (S ->empty),  

                 return (Xk, Yk) empty; 

else 

                  P = grayscale (S); change the image to           

                  one layer of grayscale image 

                 P = GaussianBlur(P); remove image noise 

                 P = Canny(P);  apply Canny Edge Filter  

                 (Xk, Yk) = Hough Line (P);  apply Hough   

                                Transform 

                  for 𝑖 ∈ {1,2} 

xi,avg =
xi,l+xi,r

2
 

 

yi,avg =
yi,l+yi,r

2
 

𝜃 = tanh−1 (
y1,avg −  y2,avg

x1,avg −  x2,avg
) 

                    end 

                    return (Xk,Yk) and 𝜃 

end 

 



 

88 

 

 

(a) 

 

 

(b) 

 

 

(c) 

 

 

(d) 

 

 

 

(e) 

  

 

 

(f) 

Fig.(13): Output of the processed image to detect the lane using Algorithm 1. (a) The original 

image from the wide-angle camera. (b) The blurred and grayscale image.  (c) The canny image 

of the grayscale image with a clear line structure. (d) The cropped canny image of the lanes. 
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(e)The two left, and right lines from Hough transform. (f) The estimated left and right lines 

identify the lane in the original image. 

5. Results and Analysis 

This section shows the result of the processed images from Algorithm 1 given in Fig.13. 

Algorithm 1 is implemented using Python programming with the OpenCV library. The three 

fundamental techniques of the Gaussian blurring, canny edge detection, and Hough transform 

are executed using the build functions in the OpenCV library optimized for computer vision 

applications. The three layers RGB original image in Fig. 13(a) are firstly converted to the first 

layer of the Gaussian blurred grayscale image shown in Fig.13(b). When applying the 

cv.canny() function, the image after executing the canny edge detection is given in Fig.13(c). 

Based on the canny image, we can see that the lane is situated at the bottom of the image, which 

can then be cropped, as shown in Fig.13(d). This observation is very important as it illustrates 

the importance of the wide-camera tilting in the prototype of the autonomous car. The camera 

should be tilting downward towards the road more, such that fewer edges are generated at the 

top part of the canny images, which existed because of the background of the original image. 

One practical solution to reduce the complexity of Algorithm 1 is to begin cropping the bottom 

part of the three layers RGB image first before converting it to a grayscale image [28]. As a 

result, the Gaussian blurring and canny edge detection are only implemented to the smaller size 

of the grayscale image. Next, applying the Hough transform function, HoughLinesP(), to the 

canny image of the lane, Algorithm 1 produces the estimated left and right lines depicted in 

Fig.13(e). Furthermore, using these two estimated lines, the steering wheel angle is computed, 

and then feedback to the front wheel motor for front maneuver.  

A lab-scale track is used to verify and test the performance of the assembled autonomous car 

prototype. Fig.14 shows the circuit containing several types of line segments with different 

angles and bends to imitate actual lanes in the real application. Using this track, the testing of 

our autonomous car prototype is conducted at the speed of 30 meters per second. At this speed, 

we found that a 13-frame-per-second video is sufficient for our AI lane detection algorithm to 

work and subsequently safely maneuver the car. Fig.15 captured some of the lane detection 

output of the test at several locations in the tracks. 
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Fig. (14): Lab-scale track for testing the built autonomous car prototype. 

 

 

 

Fig.15: Output of the generated lane from Algorithm 1 for several locations during the testing. 

 

6. Conclusions and Future Works 

In this article, we have conducted detailed and comprehensive real-time verification and testing 

on autonomous driving in the laboratory using an assembled autonomous car prototype. The 

complete hardware description and the procedure for designing and developing the 

autonomous car prototype are presented. Utilizing the computing and processing capability of 

the Rasberry Pi and Google Accelerator, the designed prototype of the autonomous car is 

equipped with the machine learning-based lane detection algorithm. Utilizing a 13 frame per 
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seconds image from the integrated camera, the assembled prototype can detect the line 

segments of the lab scale circuit and act accordingly by calculating the steering angle for 

autonomous driving maneuvers. Extending this testing and verification of the developed 

autonomous car prototype at different speeds will be the subject of interest for future work. To 

conclude, this work provided valuable insights and practical experience in developing 

autonomous driving technologies and dealing with the complexity of integrating software and 

hardware components. 
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  Raspberry Piو  Google Acceleratorتطوير سيارات ذاتية القيادة باستخدم 

 لاكتشاف المسار القائم علي التعليم الآلي
ريان حمزة السيسي، محمد عزير، نادر عودة، يوسف مبروك، عمر النواجحة، أرشد كريمبو فالابيل، 

 حافظ عبد الواجد

 قسم الهندسة الكهربائية، الجامعة الإسلامية بالمدينة المنورة، المملكة العربية السعوديةكلية الهندسة، 

 مروان هادري عزمي

 كلية الهندسة، قسم الهندسة الكهربائية، الجامعة التكنولوجية الماليزية، ماليزيا

 م( 1/9/2023م ، وقبل للنشر في  4/1/2023)قدم للنشر في 

 

ذاتية القيادة هي السيارات الذكية للمستقبل، والتي من المتوقع أن تكون بدون المركبات  ملخص البحث.

سائق، و فعالة، وتتجنب الإصطدامات كسيارات مثالية. يعد تعقيد البرامج وتحليلات البيانات في الوقت 

هذه المقالة خبرة الفعلي والتحقق والإختبار من بين التحديات الأكثر أهمية في تكنولوجيا القيادة الذاتية. تقدم 

عملية ورؤية قيمة للتحديات المذكورة أعلاه من خلال تطوير نموذج أولي لسيارة ذاتية القيادة على نطاق 

المختبر. تمت بالتفصيل مناقشة الوصف الكامل للسيارة، بما في ذلك مواصفاتها الفنية، وإجراءات تصميم 

بر. تم تجهيز النموذج الأولي المطور بخوارزميات الأجهزة والبرامج، ودائرة الإختبار على نطاق المخت

اكتشاف المسار القائمة على التعلم الآلي. يتم التحقق من آداء خوارزميات اكتشاف المسار المثبتة عن 

  .طريق اختبار النموذج الأولي للسيارة باستخدام دائرة المقياس المعملي
 

 


