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Abstract. Autonomous Vehicles (AV) are the smart cars of the future anticipated to be
driverless, efficient, and crash-avoiding ideal urban cars. Software complexity, real-time data
analytics, verification, and testing are among the more significant challenges in autonomous
driving technology. This article presents practical experience and valuable insight into the
above-mentioned challenges by developing a lab-scale autonomous car prototype using
Rasberry Pi and Google accelerator. The full description of the car, including its technical
specifications, the hardware and software design procedures, and the lab-scale circuit for
testing, are discussed in detail. The developed prototype is equipped with the machine learning-
based lane detection algorithm. The performance of the installed lane detection algorithm is
verified by testing the car prototype using the lab scale circuit.
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1. Introduction

With around 2 billion vehicles predicted to roam the road by 2030, road safety is one of
the essential agendas of governments around the world. Currently, measures to enhance road
safety have been carried seriously, with the help of technologies like Closed-Circuit Television
(CCTV) cameras, road sensors, and more [1]. However, despite these efforts, based on data
from the World Health Organization (WHO) [2], road accidents have caused around 1.25
million deaths yearly. WHO has also projected that these numbers will hit 1.8 million by 2030
[3]. Furthermore, it has been reported in [4] that the number of road accident fatalities in the
United States alone was 32,000 in 2014 and increased to more than 35,000 in 2015, which
demonstrates that human errors can still occur even with the assistance of the currently
deployed technologies. Innovative technologies such as connected and autonomous cars are
actively studied to help reduce these human errors and subsequently improve life-threatening
situations on the road.

An autonomous car is a computer-controlled car that can mainly guide itself on the road, make
its own decision, and react to the changes in its surroundings. All these functions are being
operated by the car without human interaction. The autonomous car should be supported by
features such as navigation and path planning, maneuver control, and neighborhood awareness,
which includes object detection, lane detection, self-positioning, and lane spotting [5]. Lane
detection plays an integral part in the operation and safety of autonomous cars via lane keeping
and lane departure control systems, ensuring the car is safely located in its lane and
subsequently minimizing the collision on the road. Machine learning and deep learning
mechanisms have been actively identified to potentially support lane detection features in an
autonomous car [6][7]. Within this domain of research, several approaches have been proposed
[8]. Among the work is the work of [9], which proposes a multi-sensor data system utilizing a
deep neural network to detect the lane in a 3D space. The Convolutional Neural Network
(CNN) and its waveform are analyzed in detail for lane detection [10]. In another set of works
[11], stereo vision and CNN are developed in the lane detection and classification strategy for
the autonomous car. Finally, in [12], a recurrent neural network is proposed to perform the
autonomous car’s features of lane detection and collision avoidance.

The idea of the autonomous car, despite its challenging features, opens up new innovative
applications and presents consumers with safety, ease of use, comfort, and value-added
services. To study the impact of these technologies, small prototypes of the autonomous car
are built to analyze the performance of the car in the control laboratory environment. A
prototype vehicle equipped with drive-shaft and steering encoders, a scanning laser range
finder and a passive RFID reader is used as a mapping tool, applicable to underground mining,

72



which combines odometry, laser range scanners, and RFID beacons [13],[14]. A lab-scale
dump truck equipped with a Light Detection and Ranging (LIDAR) sensor is used to perform
the navigation triangulation, in combination with reflective beacons placed on apriori known
positions to demonstrate the feasibility of autonomous underground navigation [15]. The work
of [16] builds the prototype shuttle car and the lab-scale and mock mine environment and
provides preliminary results on autonomous navigation in the mining industry [16]. The
autonomous car prototype in [16] is equipped with a series of cameras for the surrounding
views, and LIDAR tracking is used for collision avoidance and emergency brakes.

To the best of our knowledge, there are still no autonomous car prototypes in academia that
study the practical aspect of the lane detection features of an autonomous car. To add to this
line of study, our work develops the autonomous car prototype using Rasberry Pi with the
Google accelerator, implementing an Al-based technique for lane detection problems. This
paper conveys practical experience developing and testing the lab-scale autonomous car
prototype. It includes the full description of a laboratory-scale autonomous car with a detailed
machine learning-based lane detection algorithm, its design procedure, performance results on
the lab-scale circuit, and a summary and conclusion

2. Impacts of Autonomous Vehicles on Intelligent Transport

Autonomous vehicles will greatly impact the societal, health, environmental, and safety
domains of the intelligent transport industry. AVs are generally designed to ensure improved
performance in different situations. However, eliminating various risks, such as accidents, is
still not feasible. Therefore, let us briefly discuss the promising positive impacts of AVs and
their associated risks.

We start with the clear and significant benefits of AVs, which is enhanced traffic safety
compared to vehicles with drivers. This feature will result in many subsequent positive
impacts, such as a considerable drop in accident ratios globally and enhanced safety for
pedestrians, side walkers, and cyclists. AVs can also be considered green technology with
massive potential in reducing noise and air pollution, as soon most AVs will be electric. The
direct impact of AVs is even more significant to the driver, such as less stress and tired from
long hour driving or when stuck in traffic jams. When it is applied to public transport, it
improves the utilization of commute times and increases social interactions since AVs are
viable to all irrespective of age, can or cannot drive, easy mobility to venues and events, Etc.
Already mentioned benefits will also result in a stress-free live style, subsequently improving
overall health.
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While the positive impacts of AVs are huge, there are also risks associated with the large-
scale deployment of AVs in the future. One direct impact might drain away certain types of
jobs, especially those who drive for a living. Based on the statistical study by Goldman Sachs,
it is estimated that there could be up to 25,000 jobs lost a month in the US. With truck driving
as one of the most common occupations in the US, that figure could turn into over 300,000
job losses per year. On the other hand, an estimated 1.7 million truckers could also be replaced
by self-driving counterparts in the UK alone.

Besides drivers, there is also a reduction of jobs in law enforcement, as the automation of cars
enhances the safety domains by reducing and eliminating traffic violations. Table I lists the
advantages and disadvantages the future of AVs will offer to the environment, society, human
health, and safety [17-21].

Table (1). Advantages and disadvantages of AVs

Domain Positive Reason Negative Reason
S Impact Impact
Ease of 1. Door-to-door access for Job cutson | Public
access people of all ages (kids, a mega- transport
adults, or elderly) scale vehicle
2. Enhanced access to venues | specificall | drivers are
for intellectual, pleasure, or y in the no longer
social exchange transportati | needed.
on sectors
Wider For people who cannot drive
Societal mobility because of disabilities and
serious illness
Less Single AV can perform
number of multiple rounds for all your
cars per tasks daily reducing the
family number of cars on roads
Commutin | Riders can utilize commute
g time time by working or relaxing
utilization
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Enhanced
affordabilit

y

Reduced ride costs enabling
middle- or lower-class
community

Health

Improved
health

1. Less stress - Long hours of
driving directly affect human
health as driving is a stressful
job. Therefore, overall health
is improved consisting of
physical, mental, etc.

2. Fewer noise - Less cars on
roads will reduce noise
excessively, which as per
research related to
hypertension, cardiovascular
health, etc.

Environ
ment

Less
pollution

1. Gas consumption is
significantly reduced with
AVs directly ensuring less
pollution

I. Less number of AVs
will be on the road

I1. AVs will utilize
optimized routes from
destination Ato B

[11. Optimized performance
of acceleration and
braking systems

2. Moreover, future AVs will
be electric vehicles reshaping
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the transportation industry
completely

Significant | Many violations made by the

reduction drivers are completely

in traffic avoided such as

accidents 1. Over speeding

because of | 5 mpaired driving

driver- 3. Traffic violations

related 4. Distractions (use of cell

Safety crashes phones etc.)

Increased Traffic violations such as not

pedestrian following traffic signals will

safety drop to zero with driverless
cars which is not possible in
case of a driver on steering
control

Job cuts
related to
the law
enforceme
nt unit.

Better
transportati
on
infrastructur
e reducing
fines

3. Concept Design: Camera with Google Accelerator Unit (Gau) Connected to

3.1 The concept design of the autonomous car prototype:

Rasberry Pi Processor

Fig. 1 presents the main hardware and software components to design and build the
autonomous car prototype. First, the proposed design consists of a camera installed at the front
end of the car prototype with the computer vision function capturing the video of the front
sight. The camera and its function act as the vision for the designed prototype, and the captured
video after being processed via the artificial intelligent method is used to steer and maneuver
the forward movement direction. The steering and forward movement manoeuvring is
performed by the DC motor. To perform the Al processing on the contents of the captured
video frame, Python programming with an OpenCV package installed and running on the
Raspberry Pi and Google accelerator is used.
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The Raspberry Pi, refer to Fig. 4, is a single printed circuit board with four cores achieving a
speed of 1.5GHz. Moreover, it is equipped with either 2 or 4 GB of RAM capable of
processing and analyzing photos and instructing proper command to the DC Motors attached
to the wheels of the car. However, the Raspberry Pi unit can analyze one frame per second,
making it unvital to control the motors. This limitation is partially improved by connecting
the Google Accelerator unit to the Raspberry Pi unit via a USB port which can process 12
frames per second. The Coral USB Accelerator adds an Edge TPU coprocessor to the system,
which includes a USB-C socket to connect with a host computer for accelerated Machine
Learning (ML) inferencing. The onboard Edge TPU is a small Application Specific Integrated
Circuit (ASIC) designed by Google that accelerates TensorFlow Lite models in a power-
efficient manner. This can perform 4 trillion operations per second using only 2 watts of
power, as explained in the block diagram.
Moreover, software of Raspbian, Python, OpenCV, TensorFlow, and Keras is installed and
used for the execution of the codes with details as follows:

e To program the operating system of the Rasberry Pl and its graphical user interface.

e Python is used to control the manoeuvring function for the DC motors of the built

prototype
e OpenCV package is utilized to process the image captured by the camera.
e TensorFlow is an end-to-end open-source machine learning platform compatible with
Google Accelerator.

Google
Accckrator

Canen md | RaspberryPi | e DC Motor

Software:
Raspban, Python, OpenCV,
TensorFlowand Keras

Fig. (1). Main components of the proposed autonomous car prototype.
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One of the main functions of the software is to pre-process the captured image from the camera.
Moreover, for essential feature extraction such as map values, kernel convolution techniques
are used, given by the following equation 1

Glm,n] = (f * h)[m,n]

= Y hljkl flm - jin k]
k

J

1)

where the input image is denoted by f and kernel by h, with rows and columns of the resulting
matrix marked with indices m and n, respectively. The convolutional process starts with setting
a filter, which will be applied to the image, one pixel at a time.

Then, the following filtering Equation 2 is used to minimize the size of the considered image
for efficient processing by converting the image into several smaller layers

[nyync] = [fififc]
= [mnmnc] * [fififc]

()

[ [ )]

with image size (n), filter size (f), number of channels in the image (nc), padding (p), stride
(s), and number of filters [nf]. In order to process more images in less time, each colored image
is divided into three layers, and each layer of the colored image consists of three primary colors.
As a result, utilizing a higher number of filter increases is directionally proportional to layers
and inversely proportional to the dimensions of these layers. Fig. 2 provides an example of
how the filter is applied to reduce the dimensions of the RYB color image.

78



Fig. (2). Filtering to reduc e dimensins of a color image [22]

Simulation techniques are an essential part of electronic circuit design, providing insight into
a designed circuit's operation prior to its being built. It also provides invaluable input to design
optimization and verification and can highlight problems that result from component and
interconnect placement. In this work, the software Proteus is used to design and simulate the
autonomous car prototype's electronic circuit. Fig. 3 presents the electronic circuit design and

simulation of the servo motor driver that controls the motor of the right and left wheels of the
prototype.

MOTOR DRVER

e
g %
T

Fig. (3). Electronic circuit design for the driver of the back wheel motors

3.2 Assembly of the prototype:

Now we are ready to assemble the AV prototype. There are two main pieces of hardware that
need to be integrated to build the prototype. First is the Raspberry Pi, which acts as the brain
of the car, with features such as USB inputs, GPIO pins, and its connectivity to wireless
networks through Bluetooth and WIFI, shown in Fig. 4.
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The second hardware is the robotic car components from the body chassis, wheels, gear motor,
servo motor, battery chase, camera, and PCB board, i.e. Robot Hat, motor drive module, and
PCA9865. Fig. 5 presents all of the steps to assemble the prototype.

2-4ane MIPI DSI
display port
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(f)

Fig. (4). Assembly steps for the prototype. (a) Assembling the main chassis and rear motors.
(b Preparing Raspberry and Hat. (c) Installing Raspberry Pi’s Hat. (d) Preparing the front
wheels. (e) Installing the front wheels. (f) Adding the camera.

3.3 Route Optimization and Control:
This subsection present and explain the components of the robotic car that are used for route
control and optimization.
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Fig. (6). Robot Hat

As shown in Fig. 6, a Robot Hat is used to design the 40-pin GP1O Raspberry PI, which can
power Raspberry P1 using a lithium 18650 battery. Moreover, Robot Hat can manage power
even if the Raspberry got its power from an external source using a Type-c cable. Furthermore,
it contains an integrated circuit PCF8591 which is 12C communication, a protocol used to send
signals from Raspberry Pl to motors. Moreover, the PCA9865 16-channel 12-bit 12C bus
shown in Fig. 7 is the Pulse Width Modulation (PCM) driver used to control servo motors
attached to the front wheels of the car.

ﬂ“ g
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>, ﬂ

4
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—

—

Fig. (7). PCA9865
Also, a motor driver module with the following specifications shown in Fig. 8 is used:
i.  Power motor control port: include pins for supplying the chip and the motors
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ii.  PWM input for motors: PWM signal input for adjusting the speed of the two motors
iii.  Motor Output Port: output port for two motors.

P =Zaly
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.

Fig. (9). Clutch Gear SFO06C for Servo Motor

The clutch gear shown in Fig. 9 is a digital servo with a DC motor inside the core with
specifications given in Table 11. The steering gear reducer will automatically clutch and protect
the product from damage and normal load with applied load. Fig. 10 on the other hand depicts
the DC gear motor used to control the speed of the clutch gear.

Finally, a wide-angle USB camera that acts as the input component for the robotic car with the
function to capture the video image of the lane is presented in Fig. 11.
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Table (2). Specification of motor

Item V=48V V=6.0V
Consumption  (No < 50mA < 60mA
Load)

Stall Current < 550mA < 650mA
Rated Torque > 0.6kgf.cm > 0.7kgf.cm
Max. Torque > 14kgf.cm > 1.6kgf.cm
No Load Speed < 0.14sec/60° < 0.12sec/60°
-
L .

Fig. (10). Dc Gear Motor

Fig. (11). USB Camera
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4. Development of Lane Detection Algorithm

This section explains the development of the lane detection algorithm programmed in our built
autonomous car prototype. Lane detection is an integral part of an advanced driving assistant
system. The accurate identification of lanes is the foundation of driving assistant systems like
lane departure warning systems and lane change maneuver estimation.

The lane detection algorithm uses the snapshot image from the wide-angle camera. Based on
the output of the lane detection algorithm, the corresponding angle of the steering wheel is
computed and sent to the front server motor to ensure the prototype autonomously maneuvers
the built prototype car within the lab-scale track.

Fig. (12). Two lines generated as an output from the lane detection algorithm

Fig.12 illustrates the two lines generated from the executed lane detection algorithm. Each line
can be represented using the (X, Y) coordinates of the pixel at both ends of the line as in Eq. 3
and 4

X = [¥16 X2k] 3
Yo = [Vik  Yak] 4)

where subscripts 1 and 2 represent the left and right lines, respectively. As a result, the
objective of the lane detection algorithm is to obtain these four coordinates, two for each line.
To produce the two lines, image processing techniques are utilized to process the snapshot
image to reduce computational complexity. Firstly, the RGB snapshot image is converted to
one layer grayscale image to reduce the size of the image and reduce the complexity of the
algorithm. Second, the noise is removed from the grayscale image by using Gaussian blurring
technique [23]. This technique enhances the difference between pixel, which improve the
detection of the lane. Third, canny edge detection [24] is used to extract useful structural
information, i.e., the line structure of the lane, which also significantly decreases the quantity
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of data to be processed. Finally, the lane structure and the four coordinates of the left and right
lines in the image are identified by using the Hough transform method [25-27].

Once these coordinates are obtained, the next task is to determine the direction for the
autonomous car prototype. In Fig.12, the direction for the autonomous car can be determined
by generating the third lines represented using the (X, Y) coordinates as in Eq. 5, 6, 7, and 8

Xavg = [X1,avg  X2,avg] (5)

Yavg = [Yiavg Y2avg] (6)

where for i € {1,2}

Xjavg = Xll;i (7)
Yil+Yi,
YViavg = % (8)

By using the computed (Xavg, Yavg), the direction can be represented using the steering angle
6, which can be computed using Eq. 9

0 = tanh_l <Y1,avg_ YZ,avg) (9)

X1,avg™ X2,avg

Algorithm 1: Lane detection and steering angle algorithm

Input: Image S, m x n pixels
51’1 Sl,n
S—> ‘ ]
Sm1i = Smn
Output : (1) The coordinate (Xk, Yk) of the lane in the image S, where k € {I,r}

represents the left and right lines,
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(2) The steering angle 8
Procedure:
If (S ->empty),
return (Xk, Yk) empty;
else
P = grayscale (S); change the image to
one layer of grayscale image
P = GaussianBlur(P); remove image noise
P = Canny(P); apply Canny Edge Filter
(Xk, Yk) = Hough Line (P); apply Hough
Transform
fori € {1,2}

_ X+ Xjr
Xi,avg - 2

_ Yi,l+Yi,r
Yi,avg - 2

Yiavg — YZ,an>

X1,avg — X2,avg

6 = tanh‘1<

end
return (Xk,Y«) and 6
end
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(b)

(©) (d)

(e) ()
Fig.(13): Output of the processed image to detect the lane using Algorithm 1. (a) The original

image from the wide-angle camera. (b) The blurred and grayscale image. (c) The canny image
of the grayscale image with a clear line structure. (d) The cropped canny image of the lanes.
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(e)The two left, and right lines from Hough transform. (f) The estimated left and right lines
identify the lane in the original image.

5. Results and Analysis

This section shows the result of the processed images from Algorithm 1 given in Fig.13.
Algorithm 1 is implemented using Python programming with the OpenCV library. The three
fundamental techniques of the Gaussian blurring, canny edge detection, and Hough transform
are executed using the build functions in the OpenCV library optimized for computer vision
applications. The three layers RGB original image in Fig. 13(a) are firstly converted to the first
layer of the Gaussian blurred grayscale image shown in Fig.13(b). When applying the
cv.canny() function, the image after executing the canny edge detection is given in Fig.13(c).
Based on the canny image, we can see that the lane is situated at the bottom of the image, which
can then be cropped, as shown in Fig.13(d). This observation is very important as it illustrates
the importance of the wide-camera tilting in the prototype of the autonomous car. The camera
should be tilting downward towards the road more, such that fewer edges are generated at the
top part of the canny images, which existed because of the background of the original image.
One practical solution to reduce the complexity of Algorithm 1 is to begin cropping the bottom
part of the three layers RGB image first before converting it to a grayscale image [28]. As a
result, the Gaussian blurring and canny edge detection are only implemented to the smaller size
of the grayscale image. Next, applying the Hough transform function, HoughLinesP(), to the
canny image of the lane, Algorithm 1 produces the estimated left and right lines depicted in
Fig.13(e). Furthermore, using these two estimated lines, the steering wheel angle is computed,
and then feedback to the front wheel motor for front maneuver.

A lab-scale track is used to verify and test the performance of the assembled autonomous car
prototype. Fig.14 shows the circuit containing several types of line segments with different
angles and bends to imitate actual lanes in the real application. Using this track, the testing of
our autonomous car prototype is conducted at the speed of 30 meters per second. At this speed,
we found that a 13-frame-per-second video is sufficient for our Al lane detection algorithm to
work and subsequently safely maneuver the car. Fig.15 captured some of the lane detection
output of the test at several locations in the tracks.
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Fig.15: Output of the generated lane from Algorithm 1 for several locations during the testing.

6. Conclusions and Future Works

In this article, we have conducted detailed and comprehensive real-time verification and testing
on autonomous driving in the laboratory using an assembled autonomous car prototype. The
complete hardware description and the procedure for designing and developing the
autonomous car prototype are presented. Utilizing the computing and processing capability of
the Rasberry Pi and Google Accelerator, the designed prototype of the autonomous car is
equipped with the machine learning-based lane detection algorithm. Utilizing a 13 frame per
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seconds image from the integrated camera, the assembled prototype can detect the line
segments of the lab scale circuit and act accordingly by calculating the steering angle for
autonomous driving maneuvers. Extending this testing and verification of the developed
autonomous car prototype at different speeds will be the subject of interest for future work. To
conclude, this work provided valuable insights and practical experience in developing
autonomous driving technologies and dealing with the complexity of integrating software and
hardware components.
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