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Abstract. Renewable energy planning is set to be transformed by the integration of advanced 

solar irradiance forecasting techniques. By harnessing the predictive power of Machine 

Learning (ML) algorithms, planners can gain more accurate insights into future solar 

irradiance levels. This study investigates the use of ML algorithms for solar irradiance 

forecasting, intending to enhance planning strategies for renewable energy sources (RES) in 

Saudi Arabia. Using datasets sourced from various regions in Saudi Arabia, several regression 

models are evaluated, including Gradient Boosting Regressor (GBR), Linear Regression 

(LR), Long Short-Term Memory (LSTM), Bidirectional Long Short-Term Memory (Bi-

LSTM), and K-Nearest Neighbor (KNN). The analysis of this research reveals that ensemble 

techniques such as Random Forest Regression (RFR) and data-driven approaches like KNN 

exhibit superior performance compared to conventional regression models like LR, 

underscoring the significance of various ML methods in solar irradiance prediction When 

compared to Decision Tree Regressor (DTR) and RFR, models with high goodness of-fit 

metrics (R-squared, adjusted R-squared) and low error metrics (Mean Absolute Error (MAE), 

Root Mean Square Error (RMSE)) show better predictive power. The precision with which 

the proposed models forecast solar irradiance levels is further confirmed by comparison with 

previous studies. Planning for RES is advanced by this study’s identification of the best ML 

methods for predicting solar irradiation. The results highlight the potential of using ML 

approaches to optimize solar energy system integration and accelerate the shift to sustainable 

energy practices. 
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DTR Decision Tree Regressor 

EVT Extreme Value Theory 

EVD Extreme Value Distribution 

GBR Gradient Boosting Regressor 

GHI Global Horizontal Irradiance 

GPD Generalized Pareto Distribution 

KNN  K-Nearest Neighbor 

LR Linear Regression 

LSTM Long Short-Term Memory 

ML Machine Learning 

MAPE Mean Absolute Percentage Error 

MAE Mean Absolute Error 

MSE Mean Squared Error 

 MBE Median Biased Error 

MLP Multi-Layer Perception 

MICS Multiple Indicator Cluster Survey 

NRMSE Normalized Root Mean Squared Error 

SCDA Smart Urban Demo Aspern 

PV Photovoltaic 

RES Renewable Energy Sources 

RFR Random Forest Regression 

RBF Radial Basis Function 

RF Random Forest 

R2 R-Squared 

RMSE Root Mean Square Error 

RFE Recursive Feature Elimination 

RFA Recursive Feature Addition 

RNN Recurrent Neural Network 

SVR Support Vector Regression 

SDG Sustainable Development Goal 

SVM Support Vector Machine 

PDF Probability Density Function 

PCA Principal Component Analysis 
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WT Wind Turbine 

1. Introduction 

The significance of precisely projecting future energy needs is highlighted by the 

rising demand for power brought forth by technological breakthroughs. These projections are 

essential for deciding on the layout, kind, and capacity of new power plants as well as for 

maximizing the efficiency of already-existing ones [1]. Furthermore, these forecasts are 

essential for investors since they allow them to evaluate the possible effect of expected sales 

on stock values. In the energy industry, they also aid in management and technological 

planning, guaranteeing the supply of dependable and reasonably priced energy resources. 

Accurate forecasting also promotes the expansion of RES and supports global efforts to 

reduce carbon emissions. Notably, a study advocates for the use of a random effect regression 

model to incentivize investments in renewable energy. Relevant literature further highlights 

cultural perceptions of energy affordability and regional variations in power demand [2]. The 

aforementioned results highlight the importance of forecasting in guiding energy policy and 

investment decisions to meet evolving needs in a sustainable manner [3].  

The impact of energy poverty on the development of young children in nations with limited 

access to energy resources was studied by researchers in [4]. They discovered a direct 

relationship between energy poverty and early development, which has an impact on things 

like living standards and healthcare, using data from Multiple Indicator Cluster Surveys 

(MICSs). The importance of Extreme Value Theory (EVT) in other domains is also 

highlighted in the study. Through the examination of past data and the fitting of distributions, 

especially the Extreme Value Distribution (EVD) and Generalized Pareto Distribution (GPD), 

EVT, a field of statistical analysis, assists in the prediction of energy prices. EVT helps with 

risk management. and well-informed financial decision-making by enabling the forecast of 

potentially significant changes in energy costs through the identification of patterns in data.  

The authors in [5] suggested using Machine Learning (ML) technology Support Vector 

Machine (SVM) to anticipate load requirements for different components within a building, 

such as air conditioners and power, by using weather forecasts and periodic energy demand 

data. The SVM approach yielded reliable estimates of the total power load, with Median 

Biased Errors (MBEs) of 7.7% and a RMSE of 15.2%. The K-Nearest Neighbor (KNN) 

technique was used in another project, the Smart Urban Demo Aspern (SCDA) project, to 

predict data center power consumption. This required using associated data points and 

historical measurements (load demand curves) for KNN prediction. Nevertheless, the KNN 

approach’s capacity to accurately forecast future values is constrained by its exclusive 

dependence on locating comparable occurrences across a wide feature space. As such, it 

requires corroboration with time-related data identification so that predictions for the next 24 

hours can be made during business hours. 

 

For short-term load forecasting, five distinct ML techniques were investigated [6]. These 

techniques were used after first generating 24 time series, one for each hour of the day, based 

on historical data. These time series initially represented each hour of the day. Multi-Layer 

Perception (MLP), SVM, Radial Basis Function (RBF) regressor, Reduced Error Pruning 

Tree (REPTree), and Poisson process were among the ML techniques used. The Moroccan 

electrical load data were used in the experiment. As the most accurate method, the Mean 
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Absolute Percentage Error (MAPE) of 0.96 was obtained from the MLP strategy. In second 

place, SVM performed better than the other methods even though it did not reach the MLP 

method’s level of accuracy. A ML classification methodology was used [7] to develop and 

test a strategy for energy usage prediction. Using the techniques for Linear Regression (LR), 

Support Vector Regression (SVR), Random Forest (RF), Decision Tree (DT), and KNNs, the 

researchers examined historical data to create a predictive model. The addition of a one-day 

power usage attribute (kWh) was a new criterion in the study. The LR and SVR models had 

the highest accuracy rate of 85.7%, according to the data. In addition, there has been a notable 

advancement in ML, moving from methods of shallow learning to the training of Artificial 

Neural Networks (ANNs). 

The authors [8] highlighted the importance of renewable energy, specifically photovoltaic 

(PV) energy systems, for Saudi Arabia’s future. The investigators [9] performed a survey of 

1498 people to investigate the factors that influence the adoption of residential PV systems in 

Saudi Arabia. The findings raised worries 5 about installation expenses as well as revenue 

production from PV systems. The researchers [10] published a study based on a survey that 

showed people’s enthusiasm for PV systems for their homes, especially if the government 

subsidized capital expenditures by 40%. 

Analysis of power usage has long piqued the curiosity of data scientists and ML 

technologists. In addition to introducing ML models for solar energy prediction, this work 

reviews prior research on power usage predictions. The intention is to support the energy 

industry in forecasting solar energy generation. Using datasets from Turaif, Qassim, and 

Majmaah (KSA), several regression models were tested, including elastic net regression, 

linear regression, random forest, KNN, Gradient Boosting Regressor (GBR), light gradient 

boosting regressor, extreme gradient boosting regressor, and Decision Tree Regressor (DTR). 

High accuracy rates are shown in the results, with some algorithms reaching 99%. This is very 

helpful for sectors that need to estimate production rates. It is determined that Turaif, Qassim, 

is a better location for solar power plants because of its consistent weather as opposed to 

Majmaah, which produces good results but has unpredictable weather. 

This work advances solar energy forecasting by accurately predicting Global Horizontal 

Irradiance (GHI) to improve solar energy generation efficiency. By leveraging the predictive 

power of ML algorithms, planners can obtain more accurate values of the solar energy. This 

enhanced forecasting capability enables better anticipation of solar energy generation 

potential, facilitating optimized deployment of solar energy systems and infrastructure. A 

variety of ML data-driven models, such as Decision Tree (DT) Regressor (DTR), GBR, Light 

Gradient Boosting Regressor (Light GBR), Extreme Gradient Boosting Regressor (Extreme 

GBR), RF, K-Nearest Neighbors (KNN), and Elastic Net Regression, are used to evaluate 

predictive performance. Standard metrics including Mean Absolute Error (MAE), Mean 

Squared Error (MSE), Root Mean Squared Error (RMSE), coefficient of determination R-

Squared (R2), and adjusted R-squared (AR2) are used to evaluate solar electricity output 

prediction accuracy. The GBR, LR, Long Short-Term Memory (LSTM), and Bidirectional 

Long Short-Term Memory (Bi-LSTM) models outperformed Majmaah in the Turaif and 

Qassim regions. This discovery emphasizes the models’ potential relevance for solar energy 

projects in Saudi Arabia, particularly when regional variations in solar irradiance patterns are 

taken into account. 

The key contributions of this study include:  
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• Accurate forecasting of GHI is crucial to optimize solar energy generation 

effectiveness to make informed decisions regarding the sizing, placement, and 

operation of renewable energy assets.  

• The intricate correlations inherent in solar irradiance data are captured using a 

varied array of data-driven models, ranging from classic regression techniques to 

advanced machine learning algorithms.  

• A detailed review of prediction performance is conducted using different standard 

evaluation indicators, providing insights into each forecasting model’s strengths 

and limits. 

• Discovering enhanced efficiency of specific models, notably GBR, LR, LSTM, and 

Bi-LSTM, in certain geographical regions inside Saudi Arabia, which can influence 

decision-making processes for solar energy project development and execution. 

 

Overall, this work advances the state-of-the-art solar energy forecasting approaches by 

providing significant information for stakeholders involved in the development and 

administration of solar energy infrastructure in Saudi Arabia and similar countries.  

The study focuses on applying ML techniques for solar irradiance forecasting, including 

regression models (e.g., LR, GBR), deep learning architectures (e.g., LSTM, Bi-LSTM), and 

ensemble methods (e.g., RF). By analyzing information and forecasting solar energy 

generation levels, these ML algorithms enhance the planning process for RESs. The study 

illustrates the efficacy of sophisticated ML techniques in precisely predicting solar irradiance 

through a thorough evaluation and comparison of these algorithms. This is important for 

optimizing solar energy system integration and easing the shift to sustainable energy practices. 

2. Data and Methodology 

This research uses regression analysis to anticipate energy usage in the Saudi Arabian 

Kingdom in different regions as seen in Fig. 1. As depicted in Fig. 2, many regression 

approaches are used, such as linear regression, gradient boosting regressor, LSTM, Bi-LSTM, 

and KNN. Preprocessing the dataset, choosing a model, and assessing performance are the 

three steps of the methodology. The most accurate findings are obtained by linear regressions. 

The study tackles modeling uncertainty and attempts to support the power industry in 

projecting future electricity use.  

Data is gathered from multiple sources and goes through preprocessing stages such as 

skewness, imputation, normalization, and data cleaning. Then, feature selection methods like 

Principal Component Analysis (PCA), Recursive Feature Elimination (RFE), and Recursive 

Feature Addition (RFA) are used. Performance measures like MAE, Mean Squared Error 

(MSE), RMSE, and MAPE are used to examine the results of the use of deep learning 

algorithms (LSTM, Bi-LSTM, and traditional machine learning classifiers (KNN, LR, GBR), 

as illustrated in Fig 2. 
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Fig. (1). Saudi Arabia Map 

2.1. Dataset 

 

Three datasets from various cities located in Saudi Arabia like Turaif, Qassim, and Majmaah, 

are examined in this study. Date, time, global horizon, clear sky, top of atmosphere, code, 

temperature, relative humidity, pressure, wind speed, wind direction, rainfall, and snowfall 

are among the 14 columns in each dataset. A total of 72, 961 entries from February 1st, 2004, 

to March 1st, 2006, or almost two years, make up the dataset. Global horizon is ranging from 

−999.00 to 275.23, temperature ranging from 274.15 to 320.01, and pressure ranging from 

924.93 to 954.28 are some of the important data ranges. Snowfall ranged from 0.00 to 0.00, 

and rainfall from 0.00 to 1.82, as shown in Fig 3. 

 
Fig. (2).  Workflow for the Proposed Methodology 

 

2.2. Proposed Methodology 
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This work thoroughly assesses the dataset using a variety of statistical techniques throughout 

the preparation phase of our study to make sure it is reliable and appropriate for analysis. 

Metrics are used like variance, summation, skewness, standard error, and deviation among 

various approaches. When evaluating the distribution, variability, and general properties of 

the data, each of these metrics is essential. By measuring the amount that individual data 

points depart from the average, the standard deviation sheds light on how the data points are 

distributed or dispersed around the mean. The precision of the sample mean estimation is 

revealed by the standard error, which calculates the variability of sample means around the 

population mean.  

A comprehensive analysis of statistical methods is crucial for understanding the 

properties and distributions of the dataset. This includes examining measures such as standard 

deviation, skewness, summation, and variance, as depicted in Fig. 4. The data’s skewness, as 

shown in Fig. 4, indicates if the data is symmetrically distributed around the mean or skewed 

towards one tail. This measure of asymmetry helps determine the shape of the distribution 

and helps spot any possible outliers that might affect further investigation. Furthermore, Fig. 

4 provides a graphic depiction of the relative value of every characteristic in the dataset, 

illuminating its importance. This greater comprehension of each variable’s contribution to the 

dataset’s features is made possible by these visualizations, which also serve as a basis for later 

modeling and analytical judgments. The dataset thoroughly was evaluated using statistical 

analysis and visualization tools to make sure our data pretreatment strategy is resilient. By 

identifying abnormalities, outliers, or discrepancies, this thorough inspection makes it 

possible to make well-informed decisions and produce trustworthy results for further data 

analysis and assessment.  

A basic ML approach called linear regression fits a line to the dataset by forecasting 

numerical results based on numerical inputs. It is essential for its interpretability and broad 

application across many industries. The dependent variable in (1) is y below:  

 

𝑦 =  𝑏0  +   𝑏1 𝑥1  +   𝑏2 𝑥2     (1) 

 

and the independent variables are 𝑥1,  𝑥2, etc. The relationship between the independent and 

dependent variables is represented by the coefficients ( 𝑏1,  𝑏2  etc.). The direction of the 

relationship is indicated by positive or negative coefficients. To capture significant 

correlations between variables, linear regression is useful. Nevertheless, scenario-based 

forecasting has difficulties since producing precise forecasts frequently necessitates knowing 

predictor values in the future. Despite this, linear regression is still an effective method for 

comprehending and forecasting results in datasets that are appropriate for its use [11].  

 

An adaptable machine learning technique that works well for both regression and 

classification applications is random forest. To improve prediction accuracy, it combines 

several decision trees using ensemble approaches. In the random forest, every decision tree 

functions independently and adds to the final prediction. Random forest ensures forecast 

stability and reduces overfitting by combining the output from several trees. Random forests 

need uncorrelated trees and characteristics with predictive power to operate at their best. This 

approach is well-known for its ease of handling high-dimensional data and is especially useful 

when working with complex datasets. 
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Fig. (3).  Sample data 

The KNN algorithm is a popular and adaptable machine learning technique that may be 

utilized for both regression and classification applications. The key to its efficacy is ‘‘feature 

comparability”, which is the idea that the algorithm uses to determine how comparable new 

data points are to preexisting samples in the training dataset. KNN is useful in situations that 

require precision but lack a predetermined solution structure because of its capacity to produce 

extremely accurate predictions. The success of the method depends on some variables, 

including the distance measure selected and the quantity of spatial data available. Even with 

potentially greater computing costs, KNN is still the better choice when accuracy is more 

important than forecast frequency. Although KNN has several drawbacks, it is flexible 

enough to accommodate different configurations intended to improve performance on a range 

of datasets [12]. 

 

𝑦(𝑥) =
1

𝑘

̌
∑ 𝑦𝑖

𝑘

𝑖=1

  (2) 

 

Equation (2) is the KNN algorithm’s forecast for input xx. In (2), yˆ(x) represents the projected 

output value for input x. The parameter k indicates the number of nearest neighbors to take 

into account when generating a forecast, while  yi  indicates the output values of these k nearest 

neighbors. The equation computes the forecast by adding the output values of the nearest 

neighbors and then dividing by k to get the average. This averaging procedure ensures that 

the forecast is standardized and less influenced by outliers or the density of data points in the 

neighborhood.  

KNN uses the average of its k nearest neighbors’ outputs in the feature space to 

forecast the output of a new data point as given in (2). When performing classification tasks, 
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it classifies a new data point according 11 to the majority class among its closest neighbors; 

for regression tasks, it predicts the average of the target values of its closest neighbors. 

Gradient boosting is a potent ML method that may effectively capture nonlinear 

relationships seen in datasets. With no need for preprocessing, it can effectively handle 

datasets with a high cardinality of features, missing values, and outliers. Gradient boosting is 

an ensemble technique that combines several weak models to improve performance. It makes 

predictions more accurate by methodically lowering prediction errors and modifying forecasts 

according to how they affect the overall error through repetitive iterations. The gradient of the 

prediction error for every sample, which directs the model efficiently minimizing prediction 

errors, is where the technique gets its name [13]. 

 

𝐹(𝑥) = ∑ 𝑦𝑚

𝑀

𝑚=1

ℎ𝑚(𝑥)   (3) 

 

The GBR algorithm’s ensemble estimate for input x is represented in (3) which 

indicates the GBR model’s ultimate estimate for the input 𝑥. It is the aggregate of individual 

predictions from several weak learners, each with a weight assigned throughout the training 

process. M represents the total number of weak learners (decision trees) in the ensemble. Each 

poor learner is identified by the index mm, which ranges from 1 to M. The 𝑦𝑚 is the weight 

or coefficient provided to the estimate of the m-th weak learner. It calculates the impact of the 

m-th weak learner on the final prediction. ℎ𝑚(𝑥) represents the prediction generated by the 

m-th weak learner (decision tree) given input x. Each weak learner usually makes binary 

decisions depending on the characteristics of the incoming data. 

GBR successively constructs a collection of weak decision trees. Every tree undergoes 

training to forecast the residuals, or mistakes, of the antecedent trees. The total of all the trees’ 

predictions, weighted by a learning rate that establishes each tree’s contribution, is the final 

forecast, as given in (3).  

Time-series forecasting tasks like energy consumption prediction using the 

K.A.CARE dataset are well suited for the effective Recurrent Neural Network (RNN) 

architectures of LSTM and Bi-LSTM. These architectures are good for sequential data 

analysis. With the use of memory cells, input gates, forget gates, and output gates, LSTM 

networks are particularly good at identifying long-term dependencies in sequential data. This 

architecture provides greater performance in modeling complicated temporal correlations 

found in energy consumption data by enabling LSTM to learn and retain patterns across 

extended sequences [14]. The LSTM can be explained by the following (4) to (9): 

 

𝑓𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓 )  (4) 

𝑖𝑡 = 𝜎(𝑊𝑖. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖 
)  (5) 

𝑂𝑡 = 𝜎(𝑊𝑜. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)  (6) 

𝐶𝑡̃ = 𝑡𝑎𝑛ℎ(𝑊𝑐. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)        (7) 

𝐶𝑡 = 𝑓𝑡  ʘ 𝐶𝑡−1 + 𝑖𝑡 ʘ 𝐶𝑡̃  (8) 

ℎ𝑡 = 𝑂𝑡 ʘ 𝑡𝑎𝑛ℎ(𝐶𝑡)  (9) 
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𝑓𝑡 indicates the forget gate activation vector at time step t. It specifies how much of the cell 

state from the previous interval of time should be forgotten. 𝑖𝑡  refers to the input gate 

activation vector at time step t. It regulates how much of the novel input will be integrated 

into the cell state. 𝑂𝑡 is the output gate activation vector at time step t. It estimates the cell’s 

output at time step t depending on its current condition. 𝐶𝑡̃ cell state activation vector at time 

step t. It calculates new candidate values for the cell state. 𝐶𝑡 indicates the cell state vector 

at time step t. It holds information from past time steps that has been selectively updated or 

forgotten depending on the gates. ℎ𝑡 is the hidden state vector at time step t. It is the output 

of the LSTM cell at time step t, computed using the current cell state and output gate 

activation.  

An LSTM extension called Bi-LSTM processes input sequences in both forward and 

backward orientations at the same time, improving model performance. Bi-LSTM can now 

capture dependencies from both past and future time steps thanks to its bidirectional 

processing, giving researchers a more thorough understanding of the temporal patterns in the 

K.A.CARE dataset. The LSTM and Bi-LSTM architectures’ advantages can be used by 

researchers to create reliable and accurate models for forecasting energy usage. With the 

ability to incorporate seasonal patterns, historical trends, and other temporal dependencies, 

these models can successfully handle the dynamic nature of energy consumption data and 

produce accurate projections that are crucial for energy planning and management. 

3. Results and Discussions 

To assess model performance and convergence, it is essential to compare different ML 

algorithms such as (LR, KNN, GBR) and deep learning techniques such as (LSTM, Bi-

LSTM), taking into account factors like training accuracy, loss, validation accuracy, and 

validation loss. 

Figure 5 presents an assessment of the performance of different regression models in 

estimating solar irradiance over three major regions: Turaif, Qassim, and Majmaah. This 

research Starts with the Turaif and Qassim datasets, which indicate improved predictive 

capabilities due to the higher performance of LSTM and Bi-LSTM models over other models. 

In particular, the LR model has a notable MAE of 5.69, which indicates that it can reasonably 

predict real values with little variation. Moreover, the RMSE of 15.50 is rather good and 

highlights the accuracy with which it captures variability in the dependent variable.  

The results of our investigation showed that the performance of different regression models 

varied significantly depending on the geographical location. More specifically, in both the 

Turaif and Qassim regions, the LR model performed the worst when it came to forecasting 

sun irradiance levels. The notably greater MAE and RMSE numbers in comparison to other 

models demonstrate this as shown in Tables 1 to 3. Because of the limitations of the LR model, 

it is crucial to use more sophisticated machine learning methods that can identify the nonlinear 

correlations present in solar irradiance data.  

The predictive effectiveness of several models on the Turaif and Qassim datasets is shown 

in Fig. 5 to give a visual comparison of model performance.  
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Fig. (4).  Exploring Statistical Methods of the Data: (a) Standard Deviation 

Fig. (4).  Exploring Statistical Methods of the Data:  

                    (b) Standard Error                                                    (c) Skewness 
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(d) Summation  

Fig. (4).  Exploring Statistical Methods of the Data: (d) Variance 

 

 
 

Fig. (4).  Exploring Statistical Methods of the Data: (e) Variance 

 

This graphical depiction helps stakeholders identify the best method for solar irradiance 

forecast in each region by providing insightful information about the relative performance of 

models. The differences in model performance draw attention to the necessity of customized 

modeling approaches that take into consideration the particular qualities of each geographic 

area.  

 The results showed that ensemble learning methods - specifically, the GBR model - 

performed better in the Majmaah region. In terms of solar irradiance levels predictions, the 

GBR model demonstrated impressive resilience, with a comparatively low MAE of 31.95 and 

RMSE of 80.61 as shown in Table 2. In a similar vein, the KNN model performed admirably, 
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lagging the GBR model in terms of prediction accuracy. On the other hand, Majmaah 

demonstrated yet another failure of the LR model, confirming its restricted effectiveness in 

representing the intricacies of solar irradiance dynamics in this area. 

These findings highlight how crucial it is to choose modeling strategies that are suited to 

the unique features of each geographic area. While simpler regression models like LR may 

not be sufficient for precise forecasting, ensemble learning techniques like GBR are excellent 

at capturing the nonlinear correlations present in sun irradiance data. Stakeholders may 

maximize planning and deployment strategies for renewable energy and improve the accuracy 

of solar irradiance projections by utilizing sophisticated machine learning algorithms that are 

customized to the distinct characteristics of each region.  

 

By performing a thorough comparison with previous research findings, the study goes 

beyond simply evaluating the performance of the model. All datasets, including Turaif, 

Qassim, and Majmaah, showed that the LSTM, Bi-LSTM, and GBR models consistently 

performed better than alternative approaches, as presented in Tables 1 to 3. These models 

demonstrated better prediction ability as evidenced by their lower MAE and RMSE values as 

well as their higher R2 and AR2 values. There was a huge difference in the performance of 

the model when results compared with those of earlier studies. Although the accuracy metrics 

of the recommended models were consistently remarkable, several traditional methods that 

were previously used for solar irradiance prediction did not perform up to par. These models 

demonstrated lower R2 values and greater error metrics, highlighting their insufficiency in 

capturing the complex interactions present in solar irradiance data. 

Table (1). Performance Metrics of Regression Models on Turaif DataSolar energy 

market in Saudi Arabia  

Model MAE MSE RMSE NRMSE AR2 

LR 23.99 42.11 89.01 0.43 0.43 

GBR 5.69 40.14 55.50 0.98 0.98 

KNN 23.93 22.56 89.01 0.43 0.43 

RFR 44.51 51.31 41.46 0.99 0.99 

LSTM 74.19 94.94 91.74 0.99 0.99 
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   (a) Training Accuracy                                             (b) Validation Accuracy 

(c) Training Loss                                                   (d) Validation Loss 

Fig. (5).  Comparison of Models Performance and Convergence 

The significance of advanced machine learning methods like LSTM and Bi-LSTM in 

transforming solar irradiance forecasting and enhancing solar energy system deployment is 

highlighted by the obtained results. Through the utilization of these sophisticated techniques, 

interested parties may allocate resources and choose sites with knowledge, which will help 

solar energy technology become widely adopted in the Middle East and beyond. The obtained 

results also demonstrate how crucial it is for legislators and business professionals to adopt 

cutting-edge machine learning techniques for forecasting solar irradiation. Stakeholders may 

reduce uncertainty related to solar energy production and increase its efficiency by utilizing 

the predictive power of LSTM and Bi-LSTM models. This will ultimately accelerate the shift 

towards sustainable energy solutions.  

 

The results of this work indicate that the Middle East, and especially Saudi Arabia, have 

enormous potential for solar energy harvesting since their yearly solar radiation rates are more 

than 2100 kWh/𝑚2. To help with solar power plant siting and forecasting, the proposed study 

concentrated on three important Saudi Arabian regions: Turaif, Qassim, and Majmaah. It was 

done by studying the relationships between 15 several weather factors and sun intensity. The 

ML techniques that are suggested for forecasting GHI showed different levels of performance 

in different areas. The R-squared (𝑅2) values in Turaif, Qassim, are highest (98%, 99%, and 
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99%) and the RMSE values are lowest (15.5%, 9.74%, and 11.46%, respectively) for LSTM, 

GBR, and Bi-LSTM. Algorithms such as KNN, and LR, on the other hand, performed less 

well in Turaif, Qassim, suggesting that they are not very useful in GHI predictions for this 

area. 

 

Table (2). Performance Metrics of Regression Models on Majmaah Data 

Model MAE MSE RMSE NRMSE AR2 

LR 20.55 42.29 80.01 0.51 0.51 

GBR 8.69 36.14 59.50 0.88 0.88 

KNN 19.93 28.56 85.01 0.49 0.49 

RFR 43.51 47.31 48.46 0.92 0.92 

LSTM 64.19 84.94 81.74 0.96 0.96 

Bi-LSTM 71.95 92.91 90.2 0.84 0.84 

 

Significant differences were found in the performance of different machine learning 

methods for solar irradiance prediction in the Majmaah region. In particular, the models that 

performed the best were KNN, LSTM, and Bi-LSTM, with R2 values of 93%, 94%, and 94%, 

respectively. These strong R2 values underscore the algorithms’ effectiveness in GHI 

forecasting by demonstrating their resilience in capturing the unpredictability of solar 

irradiance levels. By comparison, the results of Majmaah showed that conventional 

approaches like LR, KNN, and GBR performed worse. The disparity in model performance 

highlights the shortcomings of traditional methods in precisely forecasting solar irradiance 

levels in this particular region. The significantly lower R2 values corresponding to LR, KNN, 

and GBR demonstrate their insufficiency in encapsulating the complex correlations between 

climatic factors and sun intensity in Majmaah. 

 

Table (3). Performance Metrics of Regression Models on Qassim Data 

Model MAE MSE RMSE NRMSE AR2 

LR 21.27 47.39 83.27 0.52 0.52 

GBR 9.84 39.68 61.52 0.89 0.89 

KNN 18.73 29.84 86.71 0.50 0.50 

RFR 42.16 48.21 47.63 0.91 0.91 

LSTM 65.82 82.37 80.02 0.95 0.95 

Bi-LSTM 70.49 90.17 88.32 0.83 0.83 

 

Due to their innate capacity to adjust to nonlinear patterns and relationships in the data, the 

KNN, LSTM, and Bi-LSTM models in Majmaah have demonstrated remarkable 

performance. These models, particularly LSTM and Bi-LSTM are effective at capturing the 

dynamic variations in solar irradiance by leveraging the temporal dependencies that are stored 

in the sequential data, thus enhancing the predictive accuracy. Similarly, Majmaah’s 

experience with the KNN algorithm highlights how important it is to use nearest neighbor 

relationships and localized data to accurately estimate solar irradiance levels. The design and 

implementation of solar energy in the Majmaah region are going to be significantly impacted 

by these findings. Stakeholders can make more informed decisions by adopting sophisticated 
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ML approaches like KNN, LSTM, and Bi-LSTM, which provide more accurate and consistent 

estimates of solar irradiance. Moreover, the success of these top-performing algorithms 

highlights the importance of employing data driven strategies to navigate the difficulties of 

solar energy forecasting in different geographical contexts.  

 

The proposed algorithms performed better for both Turaif, Qassim, and Majmaah when 

compared to state of-the-art methods, such as Bi-LSTM, LSTM, GBR, and KNN as depicted 

in Tables 1 to 3. Due to their stable weather, Turaif and Qassim, are suitable locations for the 

construction of solar power plants, as shown by reduced RMSE and higher R2 values, which 

highlight the combined influence of weather characteristics on solar intensity. On the other 

hand, Majmaah also offers similar favorable conditions most of the time; however, its 

occasionally varying weather suggests that solar energy projects there require more detailed 

consideration. It is concluded that to optimize solar energy production and deployment 

techniques in places such as Saudi Arabia, machine learning algorithms must be utilized to 

accurately estimate GHI. 

4. Concluesion 

The ability to accurately predict solar irradiance levels enables planners to make informed 

decisions about the sizing, placement, and operation of renewable energy assets, such as solar 

PV systems and concentrating solar power plants. In summary, the proposed work clarifies 

the effectiveness of ML algorithms in accurately forecasting solar irradiance levels, which is 

essential for efficiently planning RESs. Through comprehensive testing in various regions, 

including Saudi Arabian cities like Turaif, Qassim, and Majmaah, regression models were 

evaluated such as LSTM, Bi-LSTM, and KNN. The results emphasize the critical role of 

precise solar irradiance forecasts in maximizing the integration and deployment of solar 

energy systems.  

High goodness-of-fit metrics (R-squared, adjusted R-squared) and low error metrics 

(MAE, RMSE) demonstrate that models such as LR and GBR perform better. Conversely, 

traditional regression models such as LR show poor predictive power, highlighting the 

necessity for complex ML methods specifically designed for solar irradiance prediction. 

Additionally, the superiority of the proposed models in terms of accuracy and reliability is 

reaffirmed by the comparison with previous research in the literature.  

This study advances solar irradiance forecasting and RES planning by utilizing data-driven 

approaches like KNN and ensemble methods like LSTM. To improve prediction accuracy, 

future research should concentrate on improving already-existing models, investigating 

cutting-edge ML strategies, and incorporating new data sources. Addressing these challenges 

can accelerate the transition to a future powered by RES and drive technological progress in 

the field. Overall, the synergy between solar irradiance forecasting and renewable energy 

planning is crucial for the transition to a sustainable and resilient energy landscape. 
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شعاع الشمس لتخطيط الطاقة المتجددة في المملكة العربية السعودية آلي في التنبؤ بإ  نحو مس تقبل أ خضر: تطبيقات التعلم ال
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اإن ال مور التي تؤثر اإيجابً على تخطيط مصادر الطاقة المتجددة هي دمج تقنيات التنبؤ بلإشعاع الشمسي في المس تقبل. لذلك تبحث   البحث.ملخص 

يات رزم هذه الدراسة اس تخدام ودمج تقنيات خوارزميات التعلم الآلي من خلال التنبؤ بلإشعاع الشمسي من خلال تسخير القوة التنبؤية لهذه الخوا

لشمسي في بهدف تعزيز استراتيجيات التخطيط لمصادر الطاقة المتجدد في المملكة العربية السعودية والحصول على رؤية أ كثر دقة لمس تويات الإشعاع ا

ج الانحدار   مثل نموذج من مناطق مختلفة في المملكة العربية السعودية ومن خلالها تم تقييم العديد من نماذ المس تقبل. تم اس تخدام مجموعة من البيانات

 ب جار.الانحدار الخطي ونموذج الانحدار المعزز للتدرج والذاكرة طويلة وقصيرة المدى والذاكرة طويلة المدى ثنائية القطب وكذلك خوارزمية أ قر 

 

على البيانات مثل خوارزمية أ قرب جار ويكشف تحليل هذا البحث أ ن تقنيات التجميع مثل الانحدار العشوائي للغابت وكذلك الخوارزميات التي تعتمد 

لآلي المختلفة في التنبؤ تظهر أ داءً متفوقاً   في توقع اشعاع الشمس مقارنةً بنماذج الانحدار الخطي التقليدية هذه النتائج تؤكد أ همية وتفوق أ ساليب التعلم ا

ت المقاييس العالية لجودة الملاءمة والمقاييس المنخفضة للخطأ  قدرة تنبؤية كذلك تظهر النماذج ذا بلإشعاع الشمسي مقارنة مثلًا بخوارزمية شجرة القرار.

شعاع الشمس مقارنةً مع الدراسات السابقة. وت  سلط النتائج الضوء أ فضل.  ويتم تأ كيد ذلك بلنتائج على الدقة التي توقعت بها النماذج المقترحة لمس تويات اإ

الآلي من اجل تحسين تكامل نظم الطاقة الشمس ية وتسريع عملية التحول نحو ممارسات الاس تدامة في مجال على الإمكانات المتاحة لس تخدام نهج التعلم 

 الطاقة

 

 


