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Abstract: A rapid increase in electric-vehicle (EV) adoption is imposing new stresses on distribution feeders, yet quantitative evidence 

on how coordinated renewable generation and vehicle-to-grid (V2G) operation can mitigate these impacts remains limited, especially 

for radial networks with long laterals and evening-peaking demand. In this study, high-resolution (15-min) time-series power-flow 

simulations were performed on canonical 69-bus radial system to evaluate uncontrolled EV charging, managed charging with V2G 

triggers, and combined scenarios with feeder-embedded photovoltaics (PV) and wind turbine generation (WTG). A stochastic EV 

arrival model, battery state-of-charge tracking, and a simple charger model (2.3 kW per phase, pf≈0.95) were adopted; V2G discharging 

was activated when local voltage fell below 0.95 pu (V_on) and deactivated when voltage recovered above 0.97 pu (V_off) or when 

SoC reached the lower bound, to avoid chattering. PV/WTG outputs followed realistic diurnal profiles with lagging power factors 

representative of inverter limits. Backward/forward-sweep load flow yielded node voltages, branch currents, and total feeder losses 

across a 24-h horizon, and results were synthesized via heat maps, box plots, and daily power balance curves. It was found that 

coordinated V2G with feeder-level PV/WTG materially reduces peak source current, alleviates trunk and mid-feeder overloading, and 

lowers total active power losses, while lifting minimum voltages toward acceptable limits during critical evening windows. Benefits 

were strongest when renewable production temporally overlapped charging demand and where DERs were electrically proximate to 

stressed branches; residual constraints persisted during late-night peaks with weak renewable support. Overall, the results indicate that 

pragmatic V2G thresholds, modest feeder-sited renewables, and basic charging management can substantially improve hosting capacity 

without immediate network reinforcement. 

Keywords: Electric vehicles; Distribution networks; Vehicle-to-Grid (V2G); Photovoltaics; Wind generation; Power loss reduction; 

Voltage regulation. 

 

1. INTRODUCTION 

Electric power systems are undergoing a structural transition as transportation electrifies at scale. Electric vehicles (EVs) 

reshape not only the magnitude of electricity demand but also its temporal and spatial patterns, creating new stress points 

on distribution feeders and assets. A broad body of evidence shows that unmanaged charging can cluster in evening peaks, 

driving feeder congestion, accelerating thermal aging of transformers and cables, and provoking voltage excursions 

especially in networks already hosting large amounts of inverter-based generation [1]–[3]. In parallel, public and private 

charging infrastructure is expanding quickly, which is necessary for adoption yet amplifies planning and operational
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complexity for distribution system operators (DSOs) [2], [4]. These shifts motivate integrated energy-transport planning 

frameworks that co-optimize siting, sizing, and operational policies for EV supply equipment (EVSE) and distributed 

energy resources (DERs). 

A complementary strand focuses on coordinated (managed) charging, with and without vehicle-to-grid (V2G). 

Coordinated charging shifts EV demand away from stressed periods and aligns it with renewable availability and network 

headroom; numerous studies report substantial reductions in congestion and voltage violations when even simple 

scheduling is deployed [4]. More advanced formulations incorporate feeder constraints into charging optimization or 

jointly plan EVSE locations and sizes alongside network reinforcements [11], [14], [15]. The V2G proposition leveraging 

EV batteries for peak shaving, voltage support, and ancillary services remains technically compelling but practically 

nuanced, with net benefits contingent on battery aging costs, user acceptance, and aggregator design [16]. Early pilots 

and model-based analyses suggest that V2G adds incremental value under specific duty cycles and compensation 

structures, but managed charging often delivers the largest impact-per-cost when first deployed at scale [4], [16]. 

The primary aim of this work is to develop and evaluate an integrated framework that minimizes EV-driven feeder 

impacts losses, congestion, and voltage non-compliance by combining: 

1. Spatial planning of renewable DERs (PV/wind) through sensitivity-informed and optimization-based 

siting/sizing aligned with EV demand patterns. 

2. Operational controls that employ grid-supportive inverter functions and managed charging (with optional V2G 

where net benefits exceed aging penalties). 

3. Time-series distribution-flow simulation with uncertainty-aware inputs that reflect empirically grounded 

charging behaviour and renewable variability. 

By cross-comparing portfolios across realistic adoption and resource scenarios, the study is designed to isolate the 

marginal value of each lever and their synergies under standards-consistent operating envelopes and power-quality 

constraints. We anticipate concluding that: (i) co-designed DER siting and inverter controls can raise EV hosting capacity 

significantly above baseline; (ii) managed charging delivers high impact-per-cost when aligned with DER availability 

and feeder topology; (iii) V2G provides incremental benefits under targeted duty cycles and compensation regimes but 

is not universally superior once battery aging and user utility are internalized; and (iv) rigorous attention to 

transformer/cable thermal limits and harmonic interactions is indispensable to avoid asset over-stress and power-quality 

regressions during clustered charging events [3], [4], [6], [11], [12], [15], [16]. 

Contributions of this paper are: 

• 15-min time-series assessment of EV charging with optional V2G on the IEEE 69-bus feeder. 

• Integrated comparison of EV-only, PV+EV/V2G, and PV+WTG+EV/V2G portfolios using consistent KPIs 

(Vmin, Isrc, TPL). 

• Explicit, reproducible control logic for V2G triggering (with hysteresis) and SoC bounds. 

• Sensitivity-informed DG siting using an LSF. 

2. SYSTEM MODELING AND METHODOLOGY  

This study adopts a focused, distribution-level modeling scope that is consistent with the implemented MATLAB code 

and the IEEE-69 feeder benchmark. The objective is to isolate the dominant steady-state interactions among bus-level 

EV charging/V2G and fixed-power-factor DER (PV and wind) under radial operation, using a transparent per-unit 

formulation and a Backward/Forward Sweep (BFS) power-flow solver [17]–[20]. 
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Modeling assumptions 

• Network topology and phase model. The system is a radial feeder instantiated as IEEE-69; analysis is performed 

in a single-phase per-unit representation (phase-to-neutral base), which captures voltage-drop and current-flow 

effects along the radial paths. Three-phase unbalance, phase coupling, and mutual impedances are not modeled 

[21]–[25]. 

• Loads. Bus demands are modeled as constant complex powers (P + jQ) per time step. 

• EV/V2G behavior. EV sessions follow a bus-local queue with a maximum number of EVs depending on many 

constrains and simultaneous EVs per bus. Each connected EV charges at specific rated power; SoC evolves in 

15-min quanta within declared bounds. A local V2G trigger activates discharging at a bus when the prior-step 

voltage < 0.95 p.u., with a bounded 70%→50% SoC discharge envelope before resuming charge. Arrival 

percentages are time-varying and exogenous; random seeds are fixed for reproducibility. 

• Power-flow solution. Each 15-min step is solved via BFS to a tight voltage-change tolerance. The slack source 

is fixed at the per-unit base voltage (angle 0 unless otherwise noted). Discrete equipment controls (OLTC, 

switched capacitors), protection devices, and fault behavior are not modeled in the base case [26]–[30]. 

• Time horizon and resolution. Simulations use Δt = 15 min over ≈24 h, sufficient to capture late-

afternoon/evening charging and overnight evolution. 

These assumptions bound the problem to a transparent, steady-state, time-series screening framework that is reproducible 

and directly traceable to the implemented solver and input profiles [24]. 

Topology and bases. The distribution network is radial with a slack bus at the substation (bus 1). Calculations use a phase-

to-neutral per-unit base defined by V₍base₎ = Vₗₗ/√3 and declared power base S₍base₎. Branch series impedances Zₘₙ = Rₘₙ 

+ jXₘₙ are time-invariant; loads are modeled as constant complex powers at each step. The solver is an explicitly coded 

BFS suitable for high-R/X radial feeders [25]. 

DER representation. Distributed sources are modeled as PQ injections with fixed power factor at their assigned buses and 

time-varying active-power profiles (15-min). Reactive power is inferred via |Q|/P = tan φ.  

Compliance context. Voltage service bands and thermal limits are checked against the screening criteria referenced 

previously (ANSI C84.1/EN 50160 for voltage, IEC 60287 for ampacity); harmonic checks per IEEE 519-2022 are 

optional post-processing indicators when required [29],[30]. 

The study area comprises standardized benchmark feeders to ensure transparency and reproducibility. The primary system 

used for method development and scenario analysis is the IEEE-69 bus feeder is listed for optional cross-validation and 

sensitivity checks. 

• Scope. The IEEE-69 feeder as shown in Fig. 1 (radial, higher depth and loading diversity) is identified as an 

optional benchmark for cross-validation and sensitivity extensions (e.g., different spatial clustering, alternative 

DER siting) [29]. 

• Configuration. Unless otherwise stated, the same modeling assumptions apply (single-phase p.u., constant-power 

loads, fixed-pf PQ DER, EV/V2G rules) with feeder-specific impedances and load data from the benchmark 

sources. 
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Fig. 1: 69 Bus System Diagram. 

2.1. Electric Vehicle Charging, V2G Control, and Power-Flow Formulation 

This section formalizes the EV demand model used in the time-series studies. The representation is deliberately modular  

separating (i) charger nameplate power and power factor, (ii) arrival and parking/dwell processes, and (iii) State-of-

Charge (SoC) evolution and queue logic, so it can support baseline and mitigation scenarios without changing core 

equations. 

EV charging spans a wide range of AC and DC power levels depending on the supply voltage, current capability, and 

equipment class. In residential contexts, a very common baseline is “socket” (Mode 2/low-AC) charging via a standard 

230 V household outlet limited to ~10 A, yielding a charging power of about 2.3 kW. Peer-reviewed literature classifies 

this as low AC (< 2.3 kW) and documents its widespread use for overnight home charging in 230 V regions. 

Modern chargers employ active PFC. Base simulations use pf = 0.99 for AC and unity for DC at nominal load. Sensitivity 

runs consider pf = 0.95 and elevated distortion to reflect degraded PFC or part‑load operation. PQ checks reference IEEE 

519‑2022 limits for current distortion (TDD) and voltage THD at the PCC [25]. 

Each connection is modeled as an EV session with five attributes: arrival time, dwell (parking) duration, initial state of 

charge (SoC₀), user target SoC, and a charger nameplate limit. Sessions are admitted through a bus-local queue with a 

finite number of plugs per bus; when a port is free, the next waiting EV charges at its setpoint. This modular setup supports 

unmanaged operation as well as managed charging/V2G policies without altering the feeder equations. 

In distribution-system studies, the dominant residential pattern is overnight, long-dwell charging at home. Planning 

studies and industry-wide analyses consistently emphasize that charging at locations with long dwells—at/near home and 

work—underpins the ecosystem; long-dwell windows are commonly on the order of 8 hours or more, particularly 

overnight. In our baseline, we therefore treat a typical home session as ≈8 h of available plug-in time. The energy actually 

added in such a session depends on charger power and efficiencies; for example, a 2.3 kW socket (Mode-2, 230 V×10 A) 

adds on the order of ~18–20 kWh over 8 h after accounting for charger/battery losses often sufficient to cover a day’s 

driving whereas higher-power wall boxes add proportionally more. 

With finite plugs per bus, arriving sessions that find all ports occupied wait in a first-come-first-served queue. Sessions 

may be pre-empted or rate-limited by control logic (e.g., managed charging to respect transformer limits or V2G discharge 

bands), but the underlying bookkeeping arrival, admission, SoC update per time step remains unchanged. 

As a rule of thumb for home charging, going from a low SoC to the target SoC (e.g., ~90–95%) with a typical 2.3 kW 

socket charger takes about 8 hours overnight. The actual duration is not fixed: it shortens if the starting SoC is higher (or 
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the target is lower), and lengthens if starting from very low SoC or using a smaller effective charging power. More 

generally, 

𝑡 ≈ ((SoC −  SoC0 ) ∗  E_max)/(𝑃𝑐ℎ𝑎𝑟𝑔𝑒𝑟 ∗  η) 

So charging time varies with the SoC window, battery capacity Emax , charger power Pcharger. 

State of Charge (SoC) 

Building on the session model and the power/power-factor assumptions, the SoC state tracks how much energy an EV 

battery has at each time step and governs when a session finishes charging (or how far it may discharge under V2G). 

SoC is expressed in percent [0,100] % and with health and policy bounds, 

𝑆𝑜𝐶𝑚𝑖𝑛 ≤ 𝑆𝑜𝐶𝑘 ≤ 𝑆𝑜𝐶𝑚𝑎𝑥 

Operating bounds (health-conscious). constrain of SoC to be 20%–95%. The lower bound avoids deep-discharge stress; 

the upper bound avoids prolonged high-SoC storage, which multiple studies identify as a key driver of calendar aging. 

Arrival initialization. In the absence of site-specific telemetry, arrival SoC is drawn randomly within [20%, 95%], 

ensuring coverage of realistic arrivals from low to high without violating the health-oriented bounds above. This 

initialization is scenario-configurable. 

In distribution-level studies focused on home charging, EV arrivals are typically evening-peaked: most sessions start after 

the commute and roll into the night, producing a pronounced rise in connections between early evening and late evening 

with long overnight dwells. 

In this work study, home arrivals are represented by an evening-peaked time-of-day distribution at 15-minute resolution 

(CDF). This curve determines when sessions begin; the resulting energy draw then follows from the session model. The 

shape (timing) and intensity (penetration) remain scenario-configurable. 

The cumulative distribution function F(t) gives the probability that a home-charging session starts at or before time t 

within a day. Using a CDF lets us generate realistic as shown in Figs. 2 and 3 (evening-peaked) arrival times while 

keeping the model simple and reproducible, see Fig. 4 for electrical vehicle main data. 

 

Fig. 2: Nominal PDF. 
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Fig. 3: Empirical PDF. 

 

Fig. 4: EV parameters used in the simulations (charger power, power factor, battery energy, efficiencies, and SoC 

bounds). 

 

In distribution system engineering, the feeder at each time step is represented by nodal complex powers (P + jQ) and line 

impedances (R + jX) in a per-unit model. EV charging and DER injections are mapped to time-series net injections at 

each bus, and network performance is evaluated using voltage limits (e.g., 0.95–1.05 pu), branch-current limits, and total 

I²R losses. 

Electrical Vehicle

PF=0.95

Power

=2.3kWSoCmin

=20%

Charging 
Time=8h

SoCmax=95%



27 
 

Load flow analysis plays a critical role in addressing operational and planning challenges in power systems. By 

considering a defined generation scenario and the configuration of the transmission network, load flow analysis 

determines the steady-state operating conditions, including node voltages and power flows through branches. It provides 

insights into the balanced steady-state behavior of the system, focusing on normal operation without accounting for 

transient dynamics [28], [31].  

The Backward/Forward Sweep Method (BFSM) consists of two iterative steps: the forward sweep and the backward 

sweep. During these steps, current values are calculated, and voltages at each node are updated accordingly. This method 

does not rely on sequential numbering of branches. Instead, it utilizes a node-branch identification scheme to determine 

the number of connected branches and nodes beyond a given branch. Using this scheme, all possible paths for power and 

current flow are systematically computed [17–19]. 

Initialization 

substation (slack bus) voltage: 

Vsub
(0)≈1.0 p.u. 

All other node voltages: Initialize them to an approximate value 

Vsub
(0)≈1.0 p.u. 

Backward Sweep: 

Starting from the leaf nodes (the most downstream nodes) and moving backward toward the substation, compute branch 

currents. One common formulation is: 

𝐼𝑖
𝑛+1 =

((𝑃𝑖− 𝑗𝑄𝑖)∗)

((𝑉𝑖
𝑛)

∗
)

+  𝑠𝑢𝑚𝑘 ∈ 𝑐ℎ𝑖𝑙𝑑(𝑖)𝐼𝑘
𝑛+1         (1) 

Forward Sweep: 

After obtaining currents Ii(n+1) from the Backward Sweep, move forward from the substation (root node) to the leaf 

nodes to update voltages. A common formula is: 

𝑉𝑗
𝑛+1 =  𝑉𝑖

𝑛+1 − 𝑍𝑖𝑗 ∗  𝐼𝑗
𝑛+1                            (2) 

 

EV power aggregation converts behavioral/operational inputs arrival profile, charging-session duration, charger setpoint 

and power factor into a time series of power at resolution Δt (e.g., 15 min), then combines it with the network’s base load. 

Then Served sessions are mapped to active power assuming a quasi-constant charger setpoint at bus b, 

𝑄𝐸𝑉(𝑡) =  𝑃𝐸𝑉(𝑡) tan (arccos(𝑝𝑓))       (3) 

𝑆𝐸𝑉(𝑡) =  √𝑃𝐸𝑉(𝑡) 
2 ∗ 𝑄𝐸𝑉(𝑡) 

2                  (4) 

from which conductor currents follow. Copper losses at a line section with resistance R are, 

𝑃𝑙𝑜𝑠𝑠(𝑡) = 3 ∗ 𝐼(𝑡)
2 ∗ 𝑅                    (5) 

Daily energy is obtained by time aggregation: 

𝑃𝑇𝑜𝑡𝑎𝑙(𝑡) =  ∑ 𝑃(𝑡)
24

𝑡=0
                    (6) 

With these laws, EV aggregation yields consistent spatial temporal power profiles that examine peak demand Pmax, 

voltage compliance, thermal loading, and losses. 

2.2. Distributed Generation Modeling (PV/WTG) and DG Siting 

Distributed generation often framed under “distributed energy resources (DERs)” covers small to medium units located 

near loads (e.g., rooftop and community PV, small wind, CHP, fuel cells, engine-gensets). Properly integrated, DG can 

lower losses by serving local demand, defer some grid upgrades, improve resilience, and support decarbonization while 

also introducing new operational and coordination challenges. 
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Modern interconnection practice is shaped by IEEE Std 1547-2018, which requires DERs to have voltage/power control 

capabilities (e.g., Volt-VAR, Volt-Watt), low/high voltage and frequency ride-through, and defined performance at the 

point of common coupling. These functions turn DG from a “passive” source into an active participant in voltage and 

frequency support on distribution feeders. 

Because legacy feeders were designed for one-way power flow, significant DG penetration can drive voltage rise, reverse 

power flow, and protection coordination issues (fault level changes, directional sensing, islanding concerns). Industry 

guidance highlights protection adaptations for LV/MV networks under growing DER levels, both in grid-connected and 

islanded modes. 

Utilities increasingly use hosting capacity the maximum incremental DG that can be connected without breaching limits 

(voltage, thermal, protection, power quality) to quantify where and how much DG a feeder can accept. 

For siting/sizing DG, planners combine fast sensitivity indices (e.g., loss-sensitivity–based bus screening) with 

optimization to minimize losses, improve voltages, or relieve constraints under network limits. Recent work blends 

analytical loss-sensitivity with metaheuristics to select buses and ratings efficiently. 

When DG follows modern interconnection rules and is placed/sized with feeder limits in mind, it can reduce I2R losses, 

bolster voltage profiles, and enhance reliability. As EV charging and other new loads grow, DG’s local support 

(active/reactive power) and strategic siting become even more valuable within standard distribution-planning workflows. 

The goal of siting distributed generation (DG) is to maximize benefit (loss reduction, voltage support, reliability) while 

respecting network limits (voltage bounds, thermal ratings, protection/short-circuit constraints). In practice, buses that 

are heavily loaded or electrically far from the source often yield larger I2R loss reductions and better local voltage when 

DG injects power near the demand, but you must check for over-voltage and reverse power flow side effects. 

A practical workflow is: (1) screen candidate buses with fast sensitivity indices e.g, Loss Sensitivity Factor (LSF) for 

active-power placement and a voltage-weakness/stability index for reactive-power support; (2) validate by power flow 

each shortlisted bus over a reasonable DG size range to confirm voltage compliance, line/transformer loading, protection 

coordination, and hosting capacity; (3) choose the bus (and size) from the resulting benefit-versus-size curves. When DG 

can provide reactive power (Volt/Var), prioritizing voltage-weak buses is often advantageous. With multiple DGs, use a 

simple multi-objective optimization (losses, voltage profile, cost) and ensure phase balance if single-phase units are 

involved. 

Candidate buses for DG siting are ranked by Loss Sensitivity Factors (LSF), the sensitivity of total feeder losses to 

incremental injection at a bus. With linearized distribution factors around a solved base flow, LSF yields a ranked list of 

locations with highest marginal loss reduction and is effective as a pre‑screen before metaheuristics or multi‑objective 

optimization [28]–[31]. 

𝐿𝑆𝐹 = 2 ∑  𝑅𝑖𝑘 ∗
𝑃𝑘

𝑉𝑘
2

𝑁
{𝑘=1}                  (7) 

Single-DG algorithm 

• Solve base case; compute losses and voltages. 

• Compute LSFs for all buses; select top‑k candidates. 

• Size each candidate within local hosting-capacity margins. 

• Validate by full time-series run; iterate if needed. 

Use a constraint-driven approach for multiple DGs: first define the acceptable operating envelope, bus voltages must 

always stay within the utility’s limits, line and transformer currents must remain below ampacity, and feeder losses should 

be capped or, preferably, minimized. Screen candidate buses, then run time-series power-flow across stress scenarios 

(low-load/high-DG, high-load/low-DG, and relevant contingencies). Add or co-optimize DGs while continuously 

checking those three constraints; if any node or line violates a limit, resize, relocate, or retune (e.g., enable Volt/Var or 
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adjust setpoints) until it’s feasible. Prefer spreading several modest units near load pockets to reduce upstream currents 

and losses, watch phase balance for single-phase DGs [30], [31]. 

In distribution studies, constraints define the feasible operating envelope over time. Core voltage constraints require every 

bus to remain within utility limits under all scenarios (peak, off-peak, seasonal) and with acceptable voltage unbalance 

and quality. Current/thermal constraints cap conductor and transformer loading at (and often below) their 

continuous/emergency ampacity, accounting for ambient temperature and duty cycle. Losses are typically bounded or 

minimized to control I2R energy and costs.  

Service voltage windows follow ANSI C84.1 Range A (0.95 <= |V| <= 1.05 p.u.) and EN 50160 (~ ±10% for 95% of the 

week) as reference; unless stated, we enforce 0.95–1.05 p.u. with sensitivity to 0.90–1.10 p.u. for stress testing. 

A scientifically defensible way to limit the number of simultaneous EVs per bus is to treat it as a hosting-capacity problem 

bounded by service-voltage compliance and equipment ampacity: bus voltages must remain within the utility window 

(e.g., ANSI C84.1 Range A ≈ 0.95–1.05 p.u.; EN 50160 ~±10% for 95% of the week), and line/transformer currents must 

stay below thermal ratings under realistic coincidence of charging [19]–[23]. In typical LV contexts served by common 

residential/service transformers (often 25–50–100 kVA), multiple Level-2 chargers can quickly dominate the local load; 

utility and research studies show that even three concurrent EVs can set a new nightly peak and materially erode thermal 

headroom and transformer life on smaller units. On 25-kVA cases, NREL’s transformer-thermal work observed 

accelerated aging as the number of 6.6-kW vehicles increased; utility guidance similarly notes that three EVs starting 

together may create a new peak on a residential transformer. Given these voltage and thermal constraints and the location-

specific nature of hosting capacity a planning cap of ≤3 EVs per bus is a conservative, standards-aligned assumption 

unless a local time-series study demonstrates higher feasible concurrency without breaching voltage limits or ampacity. 

Vehicle-to-Grid (V2G) is the bidirectional use of EVs as flexible grid resources: when prices or grid needs rise, parked 

EVs discharge power back to the grid; when they fall, they charge. Through a bidirectional charger and an aggregator, 

fleets can provide peak shaving, frequency regulation, spinning reserves, and local voltage/VAR support often without 

disrupting drivers if state-of-charge (SoC) and departure times are honored. 

Constraints and limits 

• SoC bounds and departure targets: SoCmin <= SoC(t) <= SoCmax. 

• Voltage limit trigger 0.95 <|V|. 

In this study, photovoltaic (PV) farms are treated as time-varying injections of active power at specified nodes in the 

distribution network. the daily PV(t) profile at quarter-hour/hour resolution into a time-series power flow to assess its 

impact on terminal voltages, I2R losses, and line/transformer loading. This keeps the model close to operational reality: 

solar output varies over the day and directly affects current flows and voltage margins. 

Practically, PV farm effects are most apparent around midday and late afternoon; at high penetration, local voltages can 

rise and reverse power flow toward the substation may occur, while currents on sections near the injection points decrease 

and losses fall when injection is collocated with loads. Therefore, using PV as a planning lever to reduce feeder losses 

and support voltage while keeping an eye on permissible voltage limits and equipment loading. When combined with EV 

charging, PV typically does not reduce the residential evening peak, but it is highly valuable with daytime loads 

(workplaces/fleets) or when storage or modest curtailment is available to ensure compliance with constraints. 

In our scenarios, varying both the penetration level and the spatial placement: a single large plant versus distributing 

injections across multiple nodes near load pockets. We then evaluate the same performance indicators compliance with 

voltage windows, currents and equipment loading, and losses and infer the feeder’s hosting capacity with PV present. 

This brief introduction frames PV farms in a way that directly serves our analysis without delving into panel structural 

design or tracking systems. 
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In our setup, grid-connected PV farms are modeled as time-varying injections of active power at selected distribution 

nodes, with no energy storage. Practically, PV behaves as a daytime “negative load”: it reduces local currents and I2R 

losses when sited near demand but cannot shift energy into the evening, so it does not mitigate the residential evening 

peak or late-day EV charging unless those loads occur during daylight (e.g., workplaces or fleets).  

Operationally, we feed the quarter-hour/hour PV(t) profile into time-series power flow and enforce our standard 

constraints: service-voltage windows, line/transformer ampacity, and acceptable losses. With no batteries, sunrise/sunset 

ramps matter: the transition from negative to positive net load must be compatible with power source. 

PV generation curve shows how a solar plant’s output changes over a day see fig.5, it’s near zero at night, ramps up after 

sunrise, peaks around solar noon, then ramps down to zero by sunset a smooth “bell” shape. 

 

Fig. 5: PV Generation Curve. 

In this setup, grid-connected wind farms are modeled as time-varying injections of active power at selected distribution 

nodes, with reactive power handled by a fixed power factor or basic Volt/Var support from the turbine converters. We 

feed the quarter-hour (or hourly) Pwind(t) profile into time-series power flow and assess its impact on service-voltage 

compliance, I2Rlosses, and line/transformer loading, the same evaluation pipeline used for other resources. 

Compared with PV, wind output is less regular and can ramp faster, because it follows wind speed (and its 

diurnal/seasonal patterns). In many locations wind is stronger at night or in cooler seasons, so it may complement daytime 

PV but still cannot “shift” energy on its own, there’s no storage in this study.  

Wind energy generation curve that shown in Fig. 6 in our study is simply the time-series of wind-farm output injected at 

selected distribution nodes. Unlike PV’s smooth midday bell, wind is irregular: calm periods push power down, gusts 

ramp it up, and short plateaus can appear when winds hover near rated speed. Treating this curve as a time-varying 

negative load at 15-minute/hourly resolution and feed it into time-series power flow to check the same constraints that 

used elsewhere, service-voltage limits, and losses. Practically also see the conceptual framework in Fig. 7 [30]-[31]. 
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Fig. 6: Wind Energy Generation Curve. 

In the analysis, PV and wind resources are represented as time-varying injections of active power at selected distribution 

nodes, Quarter-hour or hourly profiles PV(t) and Pwind(t) are fed into time-series power flow, and standard constraints 

are enforced: service-voltage windows, line/transformer ampacity, and acceptable losses. When voltages approach upper 

limits, modest curtailment is applied; no dedicated storage is assumed for PV or wind.  

Vehicle-to-Grid (V2G) is included as a bidirectional EV resource that can discharge to the grid during constrained periods 

and charge during low-demand hours. Aggregated EV fleets are scheduled subject to state-of-charge and departure-time 

constraints so that evening peaks can be shaved and local voltage support can be provided without violating equipment 

limits. V2G injections and absorptions are treated like other nodal injections in the power-flow, while adhering to utility 

interconnection and inverter settings respecting any limits set for battery cycling. The conceptual framework of the current 

method is outlined in Fig 7. 
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PROBLEM 
 

Solution-Phase One  
 

Solution-Phase Two  
  

Rapid EV adoption 

concentrates evening 

charging on medium-

voltage feeders (e.g., 

12.66 kV), creating 

steep, coincident 

demand that can push 

bus voltages outside the 

service window (~0.95–

1.05 p.u.), overload 

lines/transformers, 

increase I2R losses, The 

core issue is limited, 

location- and time-

dependent hosting 

capacity; without 

managed charging and 

other suppor, 

compliance with 

voltage, ampacity, and 

loss limits is at risk. 

Analyzing and 

understanding the tested 

systems, obtaining the 

original system 

measurements, and 

assessing the risks 

associated with adding 

additional loads such as 

electric vehicles. 

 

Controlling electric vehicle 

charging to enable their 

contribution in supporting the 

distribution network and 

alleviating the electrical load. 

 

 Constrains: 

• EVs 

discharging 

conditions. 

• Tested 

systems 

limitations. 

 

Systems: 

69 Bus System 

 

 

EVs: 

Vehicle to Grid 

  

Integrating electric 

vehicles into the tested 

systems, obtaining the 

results to evaluate their 

impact, and studying 

possible mitigation 

strategies. 

 

Integrating an additional power 

source to support the primary 

source and cover any potential 

gaps, then obtaining and 

analyzing the results to 

evaluate the effectiveness of 

the proposed solutions. 

 

 Comments: 

• Considering 

some 

factors 

when 

adding EVs 

to the Grid. 

• For the 

second 

DGs, gaps 

of PV farms 

should be 

taken into 

account. 

 

Electrical Vehicle: 

2.3 kW 

 

DGs: 

Wind Turbine Generation 

  

Incorporating an 

additional power source 

to mitigate the impact of 

electric vehicles, 

followed by analyzing 

the results to evaluate the 

effectiveness of the 

proposed solution. 

 

Reviewing the proposed 

solutions, the applied 

methodologies, and the 

adopted approaches, followed 

by a comprehensive evaluation 

of the results and their 

discussion. 

 

  

DGs: 

PV Farms 

 

Validation and verification    

Fig. 7: Conceptual Framework. 
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3. RESULTS 

This section presents and interprets the simulation results for the proposed EV‐Charging/V2G and DG integration 

schemes on the IEEE test feeders. The section is structured around key performance indicators source current Isrc 

minimum nodal voltage Vmin and its location, and total real power losses (TPL) and contrasts their evolution across the 

day under different scenarios (baseline load, PV at selected buses, WTG, and the combined PV+WTG with EV/V2G). 

We first decompose the net source power using the daily load curve and component traces (PV, WTG, EV charging and 

discharging) to highlight how generation and fleet behaviour shift the feeder demand over time. Network quality is then 

assessed via voltage and line‐current box plots and a voltage heatmap, which together reveal spatial as well as temporal 

trends and periods when the 0.95 p.u. threshold is approached. To link these patterns to operational stress, report source‐

current trajectories and a 3-D map of branch losses and annotate the global minima and maxima of Isrc and TPL with their 

timestamps. Finally, examine fleet dynamics through “Charging vs. Waiting” counts and SOC trajectories both 

aggregated (selected buses) and individual (tracked EVs) to explain how V2G triggers and DG availability modulate 

evening peaks and midday relief. Throughout, tables summarize the extrema (values, buses, and times), while the 

discussion emphasizes the mechanisms behind improvements or degradations e.g., midday PV loss reduction versus 

evening charging–induced voltage dips and the partial mitigation provided by V2G. 

3.1. Base System 

A common reference against which all enhanced scenarios are evaluated is established in this subsection. The base system 

is defined as the IEEE radial feeder operating under its native load only  without electric-vehicle (EV) charging, without 

vehicle-to-grid (V2G) dispatch, and without distributed generation. Power-flow was solved over a 24-hour horizon with 

15-minute resolution using the backward/forward sweep algorithm applied to a single-phase equivalent, so that the 

intrinsic loading pattern and electrical behaviour of the feeder (losses, voltage depressions, and branch currents) are 

captured without external interventions. 

As Fig. 8, Fig. 9 and table 1 show the run reports total real losses ≈ 225.1 kW, source current 223.6 A, and a minimum 

voltage of 0.909 p.u. at Bus 65. With the customary 69-bus planning limit of ≈357 A per link, the source is comfortably 

below its current limit (≈37% headroom). The loss level corresponds to roughly 6% of feeder real load, which is consistent 

with a long radial feeder serving predominantly lagging PF demand.  

The profile exhibits a modest sag from the substation to the mid-feeder, then a step near Bus 28 (a lateral that is electrically 

closer to the source), after which voltages hover near unity up to Bus 50. A steep decline from Buses 57–65 culminates 

in the worst node at Bus 65 (0.909 p.u.), violating the operating band 0.95–1.05 p.u. (though still within the 0.90–1.10 

sensitivity band). The subsequent jump on the 66–69 lateral is expected, those branches are fed from upstream buses 11 

and 12, so they see shorter electrical distance and higher voltages than the deep tail around 61–65. The cluster of sizable 

loads around Bus 61 (and nearby nodes 64–65) is the main driver of the local voltage depression. 

The gradual sag from the substation toward the mid-feeder is a cumulative R/X effect  downstream load causes higher 

current in upstream segments, increasing I·Z drops. The local step  change around Bus 28 is associated with a discrete 

change in feeder conditions at that point (e.g., a lateral/branch junction and  or a concentrated load block that increases 

downstream current).  

Losses are dominated by upstream I²R feeding the 59–65 corridor; that same corridor is your binding voltage constraint 

even before EV uptake. Adding EV demand there will likely push the minimum below 0.90 p.u. at peaks and increase 

losses; by contrast, placing EV chargers on electrically stronger buses (e.g., near the substation trunk, or on the 28–51 

lateral) is far less intrusive unless paired with local DG support. 

Use this baseline to report, per 15-min interval, (i) daily real losses, (ii) minimum voltage with bus and timestamp, (iii) 

count/share of buses violating 0.95–1.05 p.u., and (iv) any branch-current exceedances versus the 357 A planning limit. 



34 
 

Then drive ESM + PSO to minimize losses and voltage deviation under those constraints, with decision variables covering 

EVs, DG siting/sizes, and PV-WTG/V2G set-points. Expect that localized DG will raise the minimum above 0.95 p.u. 

and reduce losses versus baseline, while relocating or time-shifting EV demand prevents creating a new bottleneck. 

 

Fig. 8: Voltage Profile of Base 69-Bus System. 

 

Fig. 9: Power Loss of Base 69-Bus System. 

Table 1. 69-Bus Base Daily System Extremes Values. 
Isrc 223.63 A   

Vmin 0.9092 At Bus 65 

TPL 225.11 kW Time All the day 
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3.2. Grid to Vehicle-69 Bus System 

Even with 69 bus system during 24 h of 15-min steps, EV arrivals are concentrated in the evening. This creates a clear 

peak around 18:30 h, where the source current as Fig. 10 and Fig. 11 show rises from a quiet-period level of 232.7 A at 

0.00 h to 291.6 A at 18.50 h. The system real-power losses track that rise: TPL increases from 409.0 kW (0.00 h) to 543.5 

kW (18.50 h), an increment of roughly +33% relative to the off-peak value. After the arrival wave subsides, both current 

and losses begin to decline. 

The voltage box-plots in Fig. 12 and Fig. 13 show systematic depression along downstream buses, with the lowest values 

at the tail of the feeder. The heatmap confirms a widespread crossing of the 0.95 p.u. contour after ~18 h. The worst-bus 

voltage reaches 0.825 p.u. at Bus 65 (18.50 h), indicating a severe deviation (≈ −17.5% from nominal) and clear non-

compliance with common ±10% operating limits. The timing aligns with the evening charging peak, so the under-voltage 

is primarily driven by coincident EV demand rather than baseline load alone. 

Line-current distributions are highest on the trunk segments near the substation (Lines 1–3) and on a secondary cluster 

around the mid-feeder (≈ Lines 52–57), which feed large downstream blocks. The source current plateaus near 290 A 

during the peak window, consistent with the elevated branch currents. While these values appear below typical thermal 

limits for the 69-bus benchmark, the margin is noticeably reduced at the peak and will shrink further under higher EV 

penetration. 

The TPL time series and the 3-D surface of branch losses in Fig. 14 and Fig. 15 show that the evening peak is not only 

higher in magnitude but also more spatially concentrated: losses swell on long, high-impedance sections supplying the 

far end of the feeder. Because losses scale roughly with I2R, even modest reductions in peak current through coordination 

or localized support translate directly into meaningful loss savings. 

Further insight is provided by Fig. 13, which presents a voltage heatmap across all buses over the simulated day. The 

heatmap makes it clear how voltage variations are distributed both spatially (along the feeder) and temporally (across 

time steps). The lowest-voltage regions occur during high-demand periods, and they predominantly appear at downstream 

buses where the accumulated line impedance and increased current lead to larger voltage drops. This visualization 

complements the single time-slice voltage profiles by revealing when and where undervoltage risk is most likely to occur. 

Fig. 14 complements the voltage heatmap by showing the corresponding distribution of branch real-power losses. Losses 

are concentrated on the upstream branches that carry the aggregated feeder current, while branches feeding heavily loaded 

laterals exhibit secondary peaks. The loss surface also highlights the strong coupling between EV-driven load peaks and 

loss magnification (since losses scale approximately with the square of branch current). Together, Figs. 13–14 provide a 

clearer interpretation of how time-varying EV charging impacts both voltage compliance and feeder efficiency, and they 

motivate the later scenarios in which local PV/V2G support is used to reduce current flow and mitigate losses. 

The “Charging vs. Waiting” plot in Fig. 16 and Fig.17 indicate that the system hits capacity in the 18–22 h window: up 

to ~160–165 EVs charging concurrently, with a waiting queue of ~40–45 EVs. Average SOC on the sampled buses rises 

steadily through the evening; individual traces at Bus 7 show vehicles reaching near-full SOC before midnight. In other 

words, the grid is not energy-constrained across the day, but power-constrained during a short, highly coincident interval. 

Under uncoordinated G2V behavior as in table 2, the 69 feeder exhibits strong evening coincident demand that drives 

under-voltage at the extremities and ~33% higher real-power losses at peak relative to off-peak. Adding modest 

reactive/voltage support offer the largest impact-per-cost. 
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Fig. 10: Line Current of G2V 69-Bus System. 

 

Fig. 11: Source Current of G2V 69-Bus System. 
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Fig. 12: Voltage Profile of G2V 69-Bus System. 

 

Fig. 13: Voltage Heatmap of G2V 69-Bus System. 
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 Fig. 14: Branch Loss of G2V 69-Bus System. 

 

Fig. 15: System Real Loss of G2V 69-Bus System. 
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Fig. 16: Charging of G2V 69-Bus System. 

 

 

 

 

 

 

 

 

Fig. 17: Individual SoC of G2V 69-Bus System. 

Table 2. 69-Bus G2V Daily System Extremes Values. 

Isrc,min 232.7 A   Time  0.00 h 

Isrc,max 291.6 A   Time  18.50 h 

Vmin 0.825 At Bus 65 Time  18.50 h 

TPLmin 409.0 kW   Time  0.00 h 

TPLmax 543.5 kW   Time 18.50 h 

3.3. PV/Vehicle to Grid 

In this subsection, the joint impact of photovoltaic distributed generation (PV-DG) and vehicle-to-grid (V2G) operation 

on the radial test feeder is assessed under the same demand and arrival patterns used previously. PV output is applied via 
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a time-varying irradiance profile and fixed power factor, while V2G is enabled by a voltage-triggered policy: when the 

local voltage drops below 0.95 pu, eligible EVs (with SOC ≥ 70%) are discharged toward a lower bound of 50% SOC; 

recharging toward a 95% target is resumed once system conditions allow. Power-flow calculations are performed with 

the backward/forward-sweep method using per-phase injections for all sources and loads. 

The combined PV/V2G case is analyzed in terms of feeder voltages, branch currents, source current, and total power 

losses over the 24-hour horizon. Attention is given to the evening peak, during which V2G support is expected to raise 

the minimum bus voltage, reduce trunk current plateaus, and curtail loss growth relative to the EV-only case. Midday 

intervals are examined for possible reverse-power flow and for shifts in reactive-power exchange caused by the prescribed 

PV and V2G power factors. Charging-queue dynamics and SOC trajectories are included to quantify how much flexibility 

is delivered by the connected fleet. 

Overall, the PV resource is expected to offload daytime demand and shape the daily net-load curve, while V2G provides 

targeted support during low-voltage periods. The presented plots (time series, box-plots, and heat maps) are used to 

quantify these effects and to highlight any trade-offs such as increased branch loadings on specific segments or reactive-

power burdens thereby informing voltage-security and hosting-capacity considerations for the feeder. 

Loss Sensitivity Factor – 69 Bus System 

To identify a candidate location for a single DG unit, a loss sensitivity factor (LSF) pre-screen is used, in which the 

highest value indicates that bus sensitive for a small change in active power (defined here as ΔP = 0.01 pu on the system 

base), so the results of applying LSF and indicates that bus number 61 is the best location of implementing DG  shown 

in Fig. 18.  

 

Fig. 18: Loss sensitivity factor for 69-Bus system. 

 

This subsection evaluates 24-hour simulation of the 69-radial feeder with stochastic EV arrivals, V2G support that is 

activated whenever a local bus drops below 0.95 p.u., and a PV plant connected at Bus 61 (≈1.82 MW, pf≈0.81 lagging). 

The PV profile peaks at midday while EV charging is concentrated in the early evening. All results are per-phase, solved 

with a forward/backward-sweep load flow. 

The net power in Fig. 19 seen by the substation follows the expected pattern: PV production pushes the source power and 

current down through the middle of the day and the evening EV wave drives them back up. Quantitatively, the minimum 

source current as shown in Fig. 20 and Fig. 21 occurs around the PV peak, ≈ 113 A at 13.00 h, while the maximum arrives 
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during the EV surge, ≈ 280 A at 19.00 h. The Daily Load Curve also shows several-hundred-kilowatt V2G discharge 

emerging during 18–22 h; this visibly trims the peak but does not fully offset the charging demand once PV output 

collapses after sunset. 

Voltage behavior in Fig. 22 and Fig. 23 reflects the same diurnal split. Midday, PV at Bus 61 lifts voltages along the 

downstream tail (Buses ~61–66), pulling the 0.95 p.u. contour upstream and reducing dispersion in the box plots. After 

sunset, support disappears and the weakest section collapses under the EV wave. The worst voltage is Vmin ≈ 0.899 p.u. 

at Bus 65 around 19.00 h, coincident with the source-current maximum. This is a clear violation of the 0.95 p.u. planning 

threshold despite V2G assistance, indicating that evening remains the binding constraint for voltage quality. 

Line-current statistics show the thermal picture. The highest magnitudes appear on the trunk segments near the substation 

and on a secondary cluster of laterals that feed large downstream blocks. Variability increases markedly during 18–22 h, 

aligning with EV arrivals and the source-current plateau. While currents remain below typical benchmark ampacities in 

this run, safety margin narrows at the peak and would erode quickly with higher EV penetration. 

Losses that shown in Fig. 24 and Fig. 25 follow the familiar I2R pattern. With PV production high, feeder currents and 

total real-power loss drop to a minimum of ≈ 23.2 kW at 13.00 h. During the evening charge window, currents rise across 

many branches and losses grow accordingly to a maximum of ≈ 295.1 kW at 19.00 h. The 3-D branch-loss surface 

confirms that losses concentrate on the upstream backbone and on heavily loaded laterals; PV reduces both the magnitude 

and spatial spread of losses around noon. 

Queueing and SOC traces in Fig. 26 and Fig. 27 illustrate how the control behaves at the vehicle level. Charging is 

negligible until ~17 h, then ramps sharply; waiting queues peak in the same window as the source and loss maxima. 

Individual-vehicle SOC trajectories at a sample bus show the intended policy: vehicles charge toward ~70 %, discharge 

down toward ~50 % when V2G is triggered by a local undervoltage event, and resume charging once conditions relax. 

This behavior delivers grid support exactly when and where voltages are weakest, but the aggregate V2G power in this 

setup is not yet large enough to prevent the late-evening voltage violation. 

Overall, PV sited deep in the feeder (Bus 61) strongly reduces midday loading as table 3 shows, currents, and losses and 

improves the local voltage profile. The evening remains critical, with Vmin =0.899 p.u. at Bus 65 and Isrc,max ≈ 280 A 

despite V2G. Practical remedies include increasing V2G participation or discharge caps specifically for 18–22 h, adding 

reactive support near the 61–66 tail (capacitor/regulator), modest reconductoring of the weakest spans, or 

relocating/duplicating PV closer to the most constrained nodes. Without such measures, especially under higher EV 

adoption one should expect deeper voltage dips, higher branch-current peaks, and disproportionate growth in I2R losses 

during the evening hours. 
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Fig. 19: Daily Load Curve of PV/V2G 69-Bus System. 

 

Fig. 20: Line Current of PV/V2G 69-Bus System. 
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Fig. 21: Source Current of PV/V2G 69-Bus System. 

 

Fig. 22: Voltage Profile of PV/V2G 69-Bus System. 
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Fig. 23: Voltage Heatmap of PV/V2G 69-Bus System. 

 

 

 

 

 

 

 

 

 

Fig. 24: System Real Loss of PV/V2G 69-Bus System. 
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Fig. 25: Branch Loss of PV/V2G 69-Bus System. 

 

 

 

 

 

 

 

 

 

Fig. 26: Charging of PV/V2G 69-Bus System. 
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Fig. 27: Individual SoC of PV/V2G 69-Bus System. 

 

Table 3. 69-Bus PV/V2G Daily System Extremes Values. 
Isrc,min 113.0 A   Time  13.00 h 

Isrc,max 280.4 A   Time  19.00 h 

Vmin 0.899 At Bus 65 Time  19.00 h 

TPLmin 23.2 kW   Time  13.00 h 

TPLmax 295.1  kW   Time 19.00 h 

 

3.4. PV-WTG/Vehicle to Grid 

In this subsection, the joint impact of distributed photovoltaic (PV) and wind turbine generation (WTG) in the presence 

of Vehicle-to-Grid (V2G) operation is assessed over a 24-hour horizon with 15-minute resolution. Time-varying active-

power profiles were applied to both PV and WTG, each enforced at a fixed lagging power factor, while V2G was activated 

by a voltage trigger: when any local bus dropped below 0.95 pu, eligible EVs (SOC ≥ 70%) were discharged down to 

SOC = 50%, after which normal charging toward 95% SOC resumed. Three-phase injections and loads were modeled 

per phase, and network states were computed via backward/forward sweep power-flow. 

The daily net-power plot shows that PV at Bus 17 and the wind unit at Bus 61 flatten the midday demand seen by the 

substation, while the evening EV influx drives the peak. PV ramps up from early morning, peaks around noon, and fades 

after ~16:00; the wind generator contributes across most hours with a broad shoulder. As a result, the source power 

reaches its lowest band in late afternoon when DG support is still present and before EV arrivals  and then climbs to its 

highest level in the evening once PV has vanished and EV charging dominates. EV discharging remains modest, which 

indicates that the V2G voltage trigger is seldom met while EVs are connected. 

The source current in Fig. 28 and Fig. 29 follows the same story. It is lowest during the DG-supported afternoon and 

highest during the evening charging window. Quantitatively, the simulation gives a minimum of 122.4 A at 04:00, when 

the base load is light and no EVs are present, and a maximum of 205.9 A at 22:00, coincident with the largest charging 

cohort. This alignment between current and net source power confirms that DG primarily reduces upstream transfers in 

daylight hours, while EV charging shifts the feeder’s stress to the evening. 

Voltage statistics across buses reveal a typical radial pattern: voltages are close to 1.0 p.u. near the source and decline 

toward the tail see Fig. 30 and Fig. 31. The worst case occurs at the far end of the network with Vmin  = 0.936 p.u. at Bus 

65 around 11:00. Importantly, this minimum appears before the evening EV arrivals; therefore, V2G cannot mitigate this 
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midday depression, and the wind unit at Bus 61, although helpful later  does not fully arrest the drop at the extreme end 

during peak PV export and mid-feeder flow reversals. 

Line-current boxplots highlight heavier utilization in the upstream sections (Lines 1–6) that carry the bulk of transfers, 

while mid-feeder segments experience lower currents. Distinct clusters are visible around the laterals tied to DG locations, 

reflecting periods of bidirectional flow. Evening outliers on selected downstream lines coincide with the EV charging 

surge, consistent with increased local loading and higher feeder diversity. 

Fleet and individual EV behavior match the arrival profile in Fig. 32 and Fig. 33: charging ramps sharply after ~17:00, a 

modest waiting queue forms at the peak, then both decline as vehicles complete their sessions. Tracked SOC at Bus 64 

typically climbs into the 70–75 % band before tapering. Small SOC reductions late in the evening point to brief local 

V2G discharges when the voltage dips, but these events are infrequent and do not materially change the feeder-level 

evening peak. 

System losses substantiate the flow patterns. The total real-power loss reaches a daytime minimum of 23.7 kW at 16:30 

when PV+wind support suppresses upstream transfers, and a daytime maximum of 105.6 kW at 11:00, which coincides 

with the worst far-end voltage at Bus 65 see Fig. 34 and Fig. 35. The 3-D branch-loss surface shows localized “hot spots” 

on upstream lines during the evening EV peak and on deep laterals around mid-day, capturing the temporal shift of where 

the feeder dissipates energy. 

Overall, DG smooths the day while EVs shape the night. The midday voltage constraint is fundamentally a spatial issue 

at the far end that appears when EVs are scarce; therefore, two classes of mitigations are most promising: enabling volt/var 

support from PV and wind (absorbing or injecting reactive power as needed) and strengthening mid-feeder voltage 

support via strategically placed capacitors/regulators or by relocating part of the PV capacity deeper in the feeder. On the 

demand side, incentivizing midday workplace/public EV charging would put batteries on the grid precisely when the far-

end voltage is weakest, improving both compliance and losses without raising the evening peak see table.4. 

 

Fig. 28: Daily Load Curve of PV-WTG/V2G 69-Bus System. 
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Fig. 29: Line Current of PV-WTG/V2G 69-Bus System. 

 

 

Fig. 30: Source Current of PV-WTG/V2G 69-Bus System. 
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Fig. 31: Voltage Profile of PV-WTG/V2G 69-Bus System. 

 

Fig. 32: Charging of PV-WTG/V2G 69-Bus System. 
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Fig. 33: Charging of PV-WTG/V2G 69-Bus System. 

 

Fig. 34: System Real Loss of PV-WTG/V2G 69-Bus System. 
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Fig. 35: Branch Loss of PV-WTG/V2G 69-Bus System. 

4. CONCLUSIONS 

Time-series simulations on the IEEE-69 radial feeder indicate that transport electrification is feasible without limit 

breaches when charging is feeder-aware and DERs are properly placed and controlled; in the baseline (no 

EV/PV/WTG/V2G), daily losses were ≈225.1 kW, source current ≈223.6 A, and the minimum voltage 0.909 p.u. at bus 

65, whereas unmanaged evening charging (G2V) pushed source current to ≈291.6 A at 18:50, lowered the minimum 

voltage to 0.825 p.u. at bus 65, and raised losses to ≈543.5 kW (vs. 409.0 kW at 00:00). Adding feeder-sited PV with a 

pragmatic V2G trigger reduced midday transfers (Isrc,min ≈113.0 A at 13:00) and losses (≈23.2 kW at 13:00), though late-

afternoon/evening intervals remained binding (Isrc,max ≈280.4 A; Vmin ≈0.899 p.u. at 19:00). Combining PV+WTG with 

V2G improved the full-day profile: Vmin increased to 0.936 p.u. (11:00 at bus 65), the maximum observed losses fell to 

≈105.6 kW (11:00), and Isrc,max declined to ≈205.9 A (22:00). Across scenarios, unmanaged evening charging produced 

the sharpest excursions  higher upstream currents, deeper voltage depressions, and higher I²R losses  while moderate 

charging coordination improved voltage compliance and thermal headroom; co-siting DER capacity near load pockets 

and along electrically “long” laterals localized support and reduced upstream flows; and short-duration V2G support 

shaved residual peaks and lifted the minimum-voltage profile without large stationary storage. Overall, feeder-aware 

charging, conservative inverter droops (Volt/Var, Volt/Watt), and selective reinforcements raised hosting capacity while 

maintaining comfortable voltage margins and containing losses. The novelty of this work lies in providing a unified, time-

series (15-min) assessment of EV charging (G2V), V2G support, and distributed PV/WTG integration on a benchmark 

radial distribution feeder under consistent voltage/thermal constraints. The main contributions are: (i) an integrated 

modeling and simulation framework (BFS-based) that couples feeder power-flow constraints with EV/V2G and DER 

operating profiles, (ii) a systematic scenario comparison that quantifies trade-offs between upstream current, minimum-

voltage compliance, and I²R losses across the day, and (iii) practical, design-oriented insights on how feeder-aware 

charging and localized DER/V2G support can increase hosting capacity and reduce peak stress without relying on large 

stationary storage. 
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 تقييم أثر دمج المركبات الكهربائية ومصادر الطاقة المتجددة على أداء نظام التوزيع 

 

ضغوطًا جديدة على مغذيّات التوزيع، بينما لا تزال الأدلة الكمية حول الكيفية التي يمكن بها   (EV) يشكّل التزايد السريع في تبنيّ المركبات الكهربائيةالملخص:  

التخفيف من هذه التأثيرات محدودة، خاصةً في الشبكات الشعاعية ذات الفروع الطويلة والطلب ذي   (V2G) الشبكة- إلى- للتوليد المتجدد المُنسَّق وتشغيل المركبة

ن من    15الذروة المسائية. في هذه الدراسة، أجُريت محاكاة تدفقّ قدرة زمنية عالية الدقة )كل   حافلة لتقييم الشحن غير    69دقيقة( على نظام شعاعي معياري مكوَّ

دمجة  م (WTG) وتوليد توربينات رياح (PV) ، وسيناريوهات مشتركة مع محطات كهروضوئيةV2G هربائية، والشحن المُدار مع محفزاتالمُدار للمركبات الك

كيلوواط لكل طور، ومعامل قدرة    2.3، ونموذج مبسّط للشاحن )(SOC) على المغذيّ. استخُدم نموذج وصول عشوائي للمركبات، وتتبع لحالة شحن البطارية 

ويتوقف التفريغ حين تنخفض حالة الشحن إلى حد أدنى محددّ.   (.p.u) وحدة نسبية  0.95عندما يهبط الجهد المحلي إلى أقل من   V2G (؛ ويتم تفعيل تفريغ0.95≈ 

ملفات يومية واقعية مع معاملات قدرة متأخرة تمثل حدود العواكس. أتاح أسلوب المسح الأمامي/الخلفي في تدفقّ القدرة الحصول   PV/WTG اتبّعت مخرجات

بر خرائط حرارية ومخططات صندوقية ومنحنيات  ساعة، ثم جرى تلخيص النتائج ع  25على جهود العقد، وتيارات الفروع، وإجمالي فواقد المغذيّ على أفق  

على مستوى المغذيّ يقلّل مادياً تيار المصدر الأقصى، ويخفف التحميل الزائد على العمود   PV/WTG مع موارد  V2G توازن القدرة اليومية. وتبينّ أن تنسيق

ية الحرجة. وكانت الفوائد  الرئيسي وأجزاء منتصف المغذيّ، ويخفض إجمالي فواقد القدرة الفعالة، مع رفع الجهود الدنيا نحو الحدود المقبولة خلال النوافذ المسائ 

المتجددّات زمنياً مع طلب الشحن، وحين كانت الموارد الموزعة قريبة كهربائياً من الفروع المُجهَدة؛ ومع ذلك، استمرت قيود متبقية أقوى عندما تزامن إنتاج  

البراغماتية، وقدرًا متواضعاً من المتجددّات المتموضعة على   V2G جددّات. وبصورة عامة، تشير النتائج إلى أن عتباتخلال ذرى آخر الليل مع ضعف دعم المت 

 .المغذيّ، مع إدارة أساسية للشحن، يمكنها تحسين سعة الاستضافة بدرجة كبيرة من دون الحاجة إلى تعزيز فوري للشبكة

 

؛ التوليد (PV)؛ الخلايا الكهروضوئية/الطاقة الشمسية الكهروضوئية (V2G)المركبات الكهربائية؛ شبكات التوزيع؛ من المركبة إلى الشبكة كلمات مفتاحية: 

 .بالرياح؛ تقليل فواقد القدرة؛ تنظيم الجهد

 
 


